SlideShare una empresa de Scribd logo
1 de 3
MATEMÁTICA III



APLICACIONES A LA ECONOMÍA Y A LOS NEGOCIOS DE LA INTEGRAL DEFINIDA


Se pueden presentar varias situaciones económicas en donde las cantidades pueden expresarse
como integrales definidas y representarse geométricamente como áreas entre curvas.
Veamos el caso de las utilidades netas


Supóngase que dentro de x años un plan de inversión generará utilidades a un ritmo de
              2
R1  x  =50x   dólares por año, mientras que un segundo plan lo hará a un ritmo de
R2  x  =2005x dólares por año.
a.) ¿Cuántos años será más rentable el 2º plan?
b.) ¿Cuál es el exceso de utilidad neta, si se invierte en el 2º plan, en lugar del 1º, durante el
    período que éste es más rentable que el 1º?
c.) Explicar y representar, geométricamente, el exceso de utilidad neta calculado en el ítem b.


Solución:
a.)El segundo plan será más rentable hasta que R1  x =R2  x 
    50x 2 =2005x ⇒ x 2 −5x−150=0⇒ x=15 años  no tener en cuenta x =−10 
b) Para 0≤x≤15 , el ritmo al que las utilidades generadas por el 2º plan exceden las del 1º
   es R2  x  −R1  x  dólares por año. Entonces el exceso de utilidad neta que genera el 2º
    plan durante los 15 años está dado por la integral definida:
                               15                                  15
     Exc . de utilidad neta=∫ 0       [ R2  x −R1  x  ]   dx=∫ 0    [  2005x − 50x 2 ] dx=
        15
     ¿∫ 0    −x25x150    dx= −    x3 5
                                       3                       
                                          x150 x ∣ 15 =1 . 687 ,50 dól .
                                          2          0

c) Geométricamente, la integral definida antes calculada es el área de la región limitada por las
   curvas y=R 2  x  , y =R1  x  desde x=0 hasta x=15
              y

              275

                              R2 (x)

              200
                              Exc. Util.


                                                 R1 (x)


                  50



Otra aplicación importante es el cálculo de 10 ganancias netas producidas por una
                  0           5              las      15        x
maquinaria industrial, por ejemplo.




 Aplicaciones de la integral definida                                                                  1
MATEMÁTICA III



Cuando      tienes     x    años,        una    maquinaria         industrial   genera   ingresos   a      razón   de
                        2
 R  x  =5 .000−20 x dólares por año, y los costos de operación y mantenimiento se acumulan
                                2
a razón de C  x  =2 . 00010 x dólares por año.
a.) ¿Durante cuántos años es rentable el uso de la maquinaria?
b.) ¿Cuáles son las ganancias netas generadas por la maquinaria en ese periodo de tiempo?
c.) Explicar y representar, geométricamente, las ganancias netas calculadas.


Solución:
a) El uso de la maquinaria será rentable en tanto que el ritmo al que se generan los ingresos
   sea superior al que se generan los costos. Es decir, hasta que R  x  =C  x 
       5000−20 x 2 =200010 x 2
       30 x 2=3000 ⇒ x=10 años  no tener en cuenta x=−10 
b) Dado que las ganancias netas generadas por la maquinaria durante cierto período de
    tiempo están dadas por la diferencia entre el ingreso total generado por la misma y el
    costo total de operación y mantenimiento de ésta, se puede determinar esta ganancia por
    la integral definida:

                                 10                           10
    Ganancia neta=∫ 0                 [ R  x  −C  x  ] dx=∫ 0 [  5000−20 x 2−  200010 x 2 ] dx=
            10
     =∫ 0         3000−30 x 2  dx=  3000 x −10 x 3  ∣ 10=20000
                                                          0                 dól .

c) En términos geométricos, la ganancia neta calculada en el ítem anterior está representada
   por el área de la región limitada entre las curvas y=R  x  y y=C  x  , desde x=0 hasta
     x=10 .
                             y
                     5000                                      R(x)



                      3000                  Gan. Neta

                      2000                               C(x)




                             0                            5                         10     x
Otra importante aplicación es el cálculo del excedente de los consumidores y del
                     x
excedente en la producción .


La siguiente gráfica muestra una curva de oferta F  q  para un producto, donde p indica el
precio por unidad al que un fabricante venderá o suministrará q unidades.
También se muestra la curva de demanda D  q  para el producto, donde p indica el precio por
unidad al que los consumidores comprarán o demandarán q unidades del mismo.




Aplicaciones de la integral definida                                                                                2
MATEMÁTICA III



El punto     q 0 , p 0   es el punto de equilibrio, en el cual se presenta estabilidad en la relación
producto – consumidor.
Suponiendo que el mercado está en equilibrio, en que el precio por unidad del producto es p0 ,
observando la curva de demanda se puede apreciar que hay consumidores que estarían
dispuestos a pagar más que p0 por el producto, así como también, si observamos la curva de
la oferta, podríamos concluir diciendo que hay productores que están dispuestos a ofrecer el
producto a un precio inferior que p0 .
De esta manera ambas partes pueden obtener una ganancia total que llamamos exceso.


En el caso de los consumidores, se denomina excedente o superávit del consumidor , y es
la ganancia total que obtienen los consumidores por el hecho de estar dispuestos a pagar el
producto a un precio superior al del mercado. Este se puede calcular por la integral definida
dada por:




En el caso de los productores, se denomina excedente o superávit del productor, y es la
ganancia total que obtienen los productores por el hecho de estar dispuestos a ofrecer el
producto a un precio inferior al del mercado. Este se puede calcular por la integral definida
dada por:




En el caso de que las funciones de oferta y demanda estuviesen representadas cantidades en
función de los precios, el planteo para el cálculo de los excedentes es el siguiente:




                                  q




                               q0


                                                  Ex P
                                                                 Ex C




                                                                               p
                              0       p1   p0                           p2


Aplicaciones de la integral definida                                                                 3

Más contenido relacionado

La actualidad más candente

Ejercicios de oferta y demanda
Ejercicios de  oferta y demandaEjercicios de  oferta y demanda
Ejercicios de oferta y demandaFabian B. Aguilar
 
Muestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaMuestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaJuanito Vithore
 
Ejercicios prueba de hipótesis estadística
Ejercicios prueba de hipótesis estadísticaEjercicios prueba de hipótesis estadística
Ejercicios prueba de hipótesis estadísticaMark Ardiles Alegre
 
Anualidades vencidas
Anualidades vencidasAnualidades vencidas
Anualidades vencidasleseldi
 
Distribuciones muestrales. distribucion muestral de medias
Distribuciones muestrales. distribucion muestral de mediasDistribuciones muestrales. distribucion muestral de medias
Distribuciones muestrales. distribucion muestral de mediaseraperez
 
Guia intervalos de confianza
Guia intervalos de confianzaGuia intervalos de confianza
Guia intervalos de confianzaAndres Oyarzun
 
Oferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicacionesOferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicacionesGunther_vb
 
S02.s1 - tema matematica para negocios inecuaciones
S02.s1 - tema matematica para negocios inecuaciones S02.s1 - tema matematica para negocios inecuaciones
S02.s1 - tema matematica para negocios inecuaciones emiliocastro40
 
Ejercicios de prueba de hipotesis con 𝜎 desconocida (10)
Ejercicios de prueba de hipotesis con 𝜎 desconocida (10) Ejercicios de prueba de hipotesis con 𝜎 desconocida (10)
Ejercicios de prueba de hipotesis con 𝜎 desconocida (10) Luz Hernández
 
2. ejercicios de prueba de hipótesis
2. ejercicios de prueba de hipótesis2. ejercicios de prueba de hipótesis
2. ejercicios de prueba de hipótesisluiisalbertoo-laga
 
ejercicios-resueltos-programacion-lineal
 ejercicios-resueltos-programacion-lineal ejercicios-resueltos-programacion-lineal
ejercicios-resueltos-programacion-linealAndres Sanchez
 
Aplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaAplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaNombre Apellidos
 

La actualidad más candente (20)

Problemas resueltos de derivadas
Problemas resueltos de derivadasProblemas resueltos de derivadas
Problemas resueltos de derivadas
 
Ejercicios de oferta y demanda
Ejercicios de  oferta y demandaEjercicios de  oferta y demanda
Ejercicios de oferta y demanda
 
Muestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaMuestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una media
 
Ejercicios prueba de hipótesis estadística
Ejercicios prueba de hipótesis estadísticaEjercicios prueba de hipótesis estadística
Ejercicios prueba de hipótesis estadística
 
Deber matematicas.1
Deber matematicas.1Deber matematicas.1
Deber matematicas.1
 
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer ordenAplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
 
Anualidades vencidas
Anualidades vencidasAnualidades vencidas
Anualidades vencidas
 
Distribuciones muestrales. distribucion muestral de medias
Distribuciones muestrales. distribucion muestral de mediasDistribuciones muestrales. distribucion muestral de medias
Distribuciones muestrales. distribucion muestral de medias
 
Ejercicios estadistica
Ejercicios estadisticaEjercicios estadistica
Ejercicios estadistica
 
Guia intervalos de confianza
Guia intervalos de confianzaGuia intervalos de confianza
Guia intervalos de confianza
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Problemas liniales
Problemas linialesProblemas liniales
Problemas liniales
 
Oferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicacionesOferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicaciones
 
Estadistica practic
Estadistica practicEstadistica practic
Estadistica practic
 
S02.s1 - tema matematica para negocios inecuaciones
S02.s1 - tema matematica para negocios inecuaciones S02.s1 - tema matematica para negocios inecuaciones
S02.s1 - tema matematica para negocios inecuaciones
 
Ejercicios de prueba de hipotesis con 𝜎 desconocida (10)
Ejercicios de prueba de hipotesis con 𝜎 desconocida (10) Ejercicios de prueba de hipotesis con 𝜎 desconocida (10)
Ejercicios de prueba de hipotesis con 𝜎 desconocida (10)
 
Interes compuesto
Interes compuestoInteres compuesto
Interes compuesto
 
2. ejercicios de prueba de hipótesis
2. ejercicios de prueba de hipótesis2. ejercicios de prueba de hipótesis
2. ejercicios de prueba de hipótesis
 
ejercicios-resueltos-programacion-lineal
 ejercicios-resueltos-programacion-lineal ejercicios-resueltos-programacion-lineal
ejercicios-resueltos-programacion-lineal
 
Aplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaAplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingeniería
 

Destacado

Integral definida excedente de los consumidores y de los productores
Integral definida excedente de los consumidores y de los productoresIntegral definida excedente de los consumidores y de los productores
Integral definida excedente de los consumidores y de los productoresYoyner Valdez Valdiviano
 
Ejercicios detallados del obj 8 mat II 178
Ejercicios detallados del obj 8 mat II  178 Ejercicios detallados del obj 8 mat II  178
Ejercicios detallados del obj 8 mat II 178 Jonathan Mejías
 
EJERCICIOS DE ECONOMIA MATEMATICA
EJERCICIOS DE ECONOMIA MATEMATICAEJERCICIOS DE ECONOMIA MATEMATICA
EJERCICIOS DE ECONOMIA MATEMATICARodrigo Paniagua
 
Cálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias BiológicasCálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias BiológicasJulio Samanamud
 
PENSUM PNF ADMINISTRACION UPT ARAGUA
PENSUM PNF ADMINISTRACION UPT ARAGUAPENSUM PNF ADMINISTRACION UPT ARAGUA
PENSUM PNF ADMINISTRACION UPT ARAGUAUPTARAGUA
 

Destacado (8)

La integral definida final
La integral definida finalLa integral definida final
La integral definida final
 
Guiay taller aplicacionesdeladerivada
Guiay taller aplicacionesdeladerivadaGuiay taller aplicacionesdeladerivada
Guiay taller aplicacionesdeladerivada
 
Integral definida excedente de los consumidores y de los productores
Integral definida excedente de los consumidores y de los productoresIntegral definida excedente de los consumidores y de los productores
Integral definida excedente de los consumidores y de los productores
 
FCD. Guía 4.optimizacion
FCD. Guía 4.optimizacionFCD. Guía 4.optimizacion
FCD. Guía 4.optimizacion
 
Ejercicios detallados del obj 8 mat II 178
Ejercicios detallados del obj 8 mat II  178 Ejercicios detallados del obj 8 mat II  178
Ejercicios detallados del obj 8 mat II 178
 
EJERCICIOS DE ECONOMIA MATEMATICA
EJERCICIOS DE ECONOMIA MATEMATICAEJERCICIOS DE ECONOMIA MATEMATICA
EJERCICIOS DE ECONOMIA MATEMATICA
 
Cálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias BiológicasCálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias Biológicas
 
PENSUM PNF ADMINISTRACION UPT ARAGUA
PENSUM PNF ADMINISTRACION UPT ARAGUAPENSUM PNF ADMINISTRACION UPT ARAGUA
PENSUM PNF ADMINISTRACION UPT ARAGUA
 

Similar a ejemplo

Aplicaciones de las integrales en eco nigsely romero
Aplicaciones de las integrales en eco nigsely romero Aplicaciones de las integrales en eco nigsely romero
Aplicaciones de las integrales en eco nigsely romero Nigsely Romero
 
Capitulo 5 integracion
Capitulo 5 integracionCapitulo 5 integracion
Capitulo 5 integracionMario Diego
 
Ejercicios aplicados integrales11
Ejercicios aplicados integrales11Ejercicios aplicados integrales11
Ejercicios aplicados integrales11freddy carrasco
 
Econoexamen septiembre 2014
Econoexamen septiembre 2014Econoexamen septiembre 2014
Econoexamen septiembre 2014Davidovich3
 
Integrales
IntegralesIntegrales
IntegralesC06005
 
Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...
Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...
Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...Pedro Mañas Navarro
 
Costo propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroCosto propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroJose Luis Vega Farfan
 
Afs mariano rioja - 09
Afs   mariano rioja - 09Afs   mariano rioja - 09
Afs mariano rioja - 09forallyou4
 
1 pdfsam 10produccionycostos
1 pdfsam 10produccionycostos1 pdfsam 10produccionycostos
1 pdfsam 10produccionycostosGuillermo Pereyra
 

Similar a ejemplo (20)

Aplicaciones de las integrales en eco nigsely romero
Aplicaciones de las integrales en eco nigsely romero Aplicaciones de las integrales en eco nigsely romero
Aplicaciones de las integrales en eco nigsely romero
 
Teoria y taller aplicaciones
Teoria y taller aplicacionesTeoria y taller aplicaciones
Teoria y taller aplicaciones
 
Mate 2
Mate 2Mate 2
Mate 2
 
Ejercicios resueltos monopolio
Ejercicios resueltos monopolioEjercicios resueltos monopolio
Ejercicios resueltos monopolio
 
Capitulo 5 integracion
Capitulo 5 integracionCapitulo 5 integracion
Capitulo 5 integracion
 
Ejercicios aplicados integrales11
Ejercicios aplicados integrales11Ejercicios aplicados integrales11
Ejercicios aplicados integrales11
 
Econoexamen septiembre 2014
Econoexamen septiembre 2014Econoexamen septiembre 2014
Econoexamen septiembre 2014
 
Integrales
IntegralesIntegrales
Integrales
 
4_Programacion_Entera.pptx
4_Programacion_Entera.pptx4_Programacion_Entera.pptx
4_Programacion_Entera.pptx
 
04 1
04 104 1
04 1
 
Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...
Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...
Problemas selectividad "Economia y Organizacion de Empresa" sin y con solucio...
 
Ejercicio resuelto de monopolio
Ejercicio resuelto de monopolioEjercicio resuelto de monopolio
Ejercicio resuelto de monopolio
 
Costo propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroCosto propiedad operacion de equipo minero
Costo propiedad operacion de equipo minero
 
Afs mariano rioja - 09
Afs   mariano rioja - 09Afs   mariano rioja - 09
Afs mariano rioja - 09
 
Punto de equlibrio
Punto de equlibrioPunto de equlibrio
Punto de equlibrio
 
Punto de equlibrio
Punto de equlibrioPunto de equlibrio
Punto de equlibrio
 
Proyecto mate
Proyecto mateProyecto mate
Proyecto mate
 
1 pdfsam 10produccionycostos
1 pdfsam 10produccionycostos1 pdfsam 10produccionycostos
1 pdfsam 10produccionycostos
 
Ejercicios resueltos competencia perfecta
Ejercicios resueltos competencia perfectaEjercicios resueltos competencia perfecta
Ejercicios resueltos competencia perfecta
 
Ejercicios resueltos competencia perfecta
Ejercicios resueltos competencia perfectaEjercicios resueltos competencia perfecta
Ejercicios resueltos competencia perfecta
 

Más de gusanchez2668

Resumen humildad y liderazgo guillermo leonel sánchez hernández
Resumen humildad y liderazgo guillermo leonel sánchez hernándezResumen humildad y liderazgo guillermo leonel sánchez hernández
Resumen humildad y liderazgo guillermo leonel sánchez hernándezgusanchez2668
 
Grupo modelo S.A.B. de C.V.
Grupo modelo S.A.B. de C.V.Grupo modelo S.A.B. de C.V.
Grupo modelo S.A.B. de C.V.gusanchez2668
 
Ejercicio completo colegio
Ejercicio completo colegioEjercicio completo colegio
Ejercicio completo colegiogusanchez2668
 
Tecnología educativa uav
Tecnología educativa uavTecnología educativa uav
Tecnología educativa uavgusanchez2668
 
MonografíA Delincuencia Juvenil
MonografíA Delincuencia JuvenilMonografíA Delincuencia Juvenil
MonografíA Delincuencia Juvenilgusanchez2668
 
Copia De Delincuencia Juvenil
Copia De Delincuencia JuvenilCopia De Delincuencia Juvenil
Copia De Delincuencia Juvenilgusanchez2668
 
Gobierno ElectróNico 2
Gobierno ElectróNico 2Gobierno ElectróNico 2
Gobierno ElectróNico 2gusanchez2668
 
Powerpoint Crear Plantilla
Powerpoint Crear PlantillaPowerpoint Crear Plantilla
Powerpoint Crear Plantillagusanchez2668
 
Cuando Crea Una Plantilla 2007
Cuando Crea Una Plantilla 2007Cuando Crea Una Plantilla 2007
Cuando Crea Una Plantilla 2007gusanchez2668
 
Powerpoint Crear Plantilla
Powerpoint Crear PlantillaPowerpoint Crear Plantilla
Powerpoint Crear Plantillagusanchez2668
 

Más de gusanchez2668 (20)

Resumen humildad y liderazgo guillermo leonel sánchez hernández
Resumen humildad y liderazgo guillermo leonel sánchez hernándezResumen humildad y liderazgo guillermo leonel sánchez hernández
Resumen humildad y liderazgo guillermo leonel sánchez hernández
 
Innovación
InnovaciónInnovación
Innovación
 
Grupo modelo S.A.B. de C.V.
Grupo modelo S.A.B. de C.V.Grupo modelo S.A.B. de C.V.
Grupo modelo S.A.B. de C.V.
 
Ejercicio java1.1
Ejercicio java1.1Ejercicio java1.1
Ejercicio java1.1
 
Ejercicio java
Ejercicio javaEjercicio java
Ejercicio java
 
Ejercicio completo colegio
Ejercicio completo colegioEjercicio completo colegio
Ejercicio completo colegio
 
Tecnología educativa uav
Tecnología educativa uavTecnología educativa uav
Tecnología educativa uav
 
MonografíA Delincuencia Juvenil
MonografíA Delincuencia JuvenilMonografíA Delincuencia Juvenil
MonografíA Delincuencia Juvenil
 
Copia De Delincuencia Juvenil
Copia De Delincuencia JuvenilCopia De Delincuencia Juvenil
Copia De Delincuencia Juvenil
 
Visión en pdf
Visión en pdfVisión en pdf
Visión en pdf
 
Gobierno ..
Gobierno ..Gobierno ..
Gobierno ..
 
Gobierno ElectróNico 2
Gobierno ElectróNico 2Gobierno ElectróNico 2
Gobierno ElectróNico 2
 
Powerpoint Crear Plantilla
Powerpoint Crear PlantillaPowerpoint Crear Plantilla
Powerpoint Crear Plantilla
 
Cuando Crea Una Plantilla 2007
Cuando Crea Una Plantilla 2007Cuando Crea Una Plantilla 2007
Cuando Crea Una Plantilla 2007
 
110909
110909110909
110909
 
Powerpoint Crear Plantilla
Powerpoint Crear PlantillaPowerpoint Crear Plantilla
Powerpoint Crear Plantilla
 
Innovatec Ii
Innovatec IiInnovatec Ii
Innovatec Ii
 
Innovatec Ii
Innovatec IiInnovatec Ii
Innovatec Ii
 
Innovatec Ii
Innovatec IiInnovatec Ii
Innovatec Ii
 
Coloquio
ColoquioColoquio
Coloquio
 

Último

Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdfDemetrio Ccesa Rayme
 
Síndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuaniSíndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuanishflorezg
 
Filo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucíaFilo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucíaJoaquinMaisanaba
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfGonella
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasFlor Idalia Espinoza Ortega
 
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptxTAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptxjosem5454881
 
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptxGOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptxJaimeAlvarado78
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdfDemetrio Ccesa Rayme
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfandioclex
 
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxMINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxLorenaHualpachoque
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdfEdiciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdfDemetrio Ccesa Rayme
 
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdfDiseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdfDemetrio Ccesa Rayme
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxhenarfdez
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptxDemetrio Ccesa Rayme
 
Programa dia de las madres para la convi
Programa dia de las madres para la conviPrograma dia de las madres para la convi
Programa dia de las madres para la convikevinmolina060703
 

Último (20)

Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
Síndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuaniSíndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuani
 
Filo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucíaFilo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucía
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemas
 
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptxTAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
 
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptxGOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
 
Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdf
 
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxMINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdfEdiciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdf
 
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdfDiseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
Programa dia de las madres para la convi
Programa dia de las madres para la conviPrograma dia de las madres para la convi
Programa dia de las madres para la convi
 

ejemplo

  • 1. MATEMÁTICA III APLICACIONES A LA ECONOMÍA Y A LOS NEGOCIOS DE LA INTEGRAL DEFINIDA Se pueden presentar varias situaciones económicas en donde las cantidades pueden expresarse como integrales definidas y representarse geométricamente como áreas entre curvas. Veamos el caso de las utilidades netas Supóngase que dentro de x años un plan de inversión generará utilidades a un ritmo de 2 R1  x  =50x dólares por año, mientras que un segundo plan lo hará a un ritmo de R2  x  =2005x dólares por año. a.) ¿Cuántos años será más rentable el 2º plan? b.) ¿Cuál es el exceso de utilidad neta, si se invierte en el 2º plan, en lugar del 1º, durante el período que éste es más rentable que el 1º? c.) Explicar y representar, geométricamente, el exceso de utilidad neta calculado en el ítem b. Solución: a.)El segundo plan será más rentable hasta que R1  x =R2  x  50x 2 =2005x ⇒ x 2 −5x−150=0⇒ x=15 años  no tener en cuenta x =−10  b) Para 0≤x≤15 , el ritmo al que las utilidades generadas por el 2º plan exceden las del 1º es R2  x  −R1  x  dólares por año. Entonces el exceso de utilidad neta que genera el 2º plan durante los 15 años está dado por la integral definida: 15 15 Exc . de utilidad neta=∫ 0 [ R2  x −R1  x  ] dx=∫ 0 [  2005x − 50x 2 ] dx= 15 ¿∫ 0 −x25x150  dx= − x3 5 3   x150 x ∣ 15 =1 . 687 ,50 dól . 2 0 c) Geométricamente, la integral definida antes calculada es el área de la región limitada por las curvas y=R 2  x  , y =R1  x  desde x=0 hasta x=15 y 275 R2 (x) 200 Exc. Util. R1 (x) 50 Otra aplicación importante es el cálculo de 10 ganancias netas producidas por una 0 5 las 15 x maquinaria industrial, por ejemplo. Aplicaciones de la integral definida 1
  • 2. MATEMÁTICA III Cuando tienes x años, una maquinaria industrial genera ingresos a razón de 2 R  x  =5 .000−20 x dólares por año, y los costos de operación y mantenimiento se acumulan 2 a razón de C  x  =2 . 00010 x dólares por año. a.) ¿Durante cuántos años es rentable el uso de la maquinaria? b.) ¿Cuáles son las ganancias netas generadas por la maquinaria en ese periodo de tiempo? c.) Explicar y representar, geométricamente, las ganancias netas calculadas. Solución: a) El uso de la maquinaria será rentable en tanto que el ritmo al que se generan los ingresos sea superior al que se generan los costos. Es decir, hasta que R  x  =C  x  5000−20 x 2 =200010 x 2 30 x 2=3000 ⇒ x=10 años  no tener en cuenta x=−10  b) Dado que las ganancias netas generadas por la maquinaria durante cierto período de tiempo están dadas por la diferencia entre el ingreso total generado por la misma y el costo total de operación y mantenimiento de ésta, se puede determinar esta ganancia por la integral definida: 10 10 Ganancia neta=∫ 0 [ R  x  −C  x  ] dx=∫ 0 [  5000−20 x 2−  200010 x 2 ] dx= 10 =∫ 0  3000−30 x 2  dx=  3000 x −10 x 3  ∣ 10=20000 0 dól . c) En términos geométricos, la ganancia neta calculada en el ítem anterior está representada por el área de la región limitada entre las curvas y=R  x  y y=C  x  , desde x=0 hasta x=10 . y 5000 R(x) 3000 Gan. Neta 2000 C(x) 0 5 10 x Otra importante aplicación es el cálculo del excedente de los consumidores y del x excedente en la producción . La siguiente gráfica muestra una curva de oferta F  q  para un producto, donde p indica el precio por unidad al que un fabricante venderá o suministrará q unidades. También se muestra la curva de demanda D  q  para el producto, donde p indica el precio por unidad al que los consumidores comprarán o demandarán q unidades del mismo. Aplicaciones de la integral definida 2
  • 3. MATEMÁTICA III El punto  q 0 , p 0 es el punto de equilibrio, en el cual se presenta estabilidad en la relación producto – consumidor. Suponiendo que el mercado está en equilibrio, en que el precio por unidad del producto es p0 , observando la curva de demanda se puede apreciar que hay consumidores que estarían dispuestos a pagar más que p0 por el producto, así como también, si observamos la curva de la oferta, podríamos concluir diciendo que hay productores que están dispuestos a ofrecer el producto a un precio inferior que p0 . De esta manera ambas partes pueden obtener una ganancia total que llamamos exceso. En el caso de los consumidores, se denomina excedente o superávit del consumidor , y es la ganancia total que obtienen los consumidores por el hecho de estar dispuestos a pagar el producto a un precio superior al del mercado. Este se puede calcular por la integral definida dada por: En el caso de los productores, se denomina excedente o superávit del productor, y es la ganancia total que obtienen los productores por el hecho de estar dispuestos a ofrecer el producto a un precio inferior al del mercado. Este se puede calcular por la integral definida dada por: En el caso de que las funciones de oferta y demanda estuviesen representadas cantidades en función de los precios, el planteo para el cálculo de los excedentes es el siguiente: q q0 Ex P Ex C p 0 p1 p0 p2 Aplicaciones de la integral definida 3