SlideShare una empresa de Scribd logo
1 de 2
Descargar para leer sin conexión
UNED. ELCHE. e-mail: imozas@elx.uned.es
TUTORÍA DE MATEMÁTICAS III (2º A.D.E.) http://telefonica.net/web/imm
Ejercicios de series numéricas propuestos en exámenes–1/2–
EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES
1.- Estudie el carácter de la serie numérica ∑
∞
=1n
n
1
. (Febrero 2002, ex. or.)
Solución.- Puesto que
n
1
n
1
≥ , n = 1, 2, 3, ....y la serie ∑
∞
=1n
n
1
es divergente, la serie
propuesta será divergente.
2.- Estudiar el carácter de ∑
∞
=






1n
nln
2
1
.(Febrero 2002, ex. res.)
Solución.- 2ln n
< eln n
= n ⇒
n
1
2
1
nln
≥ , n = 1, 2, 3, ...., luego la serie propuesta diverge.
3.- Utilizando el criterio de D’Alembert, demostrar que ∑
∞
=






1n
n
!n
n
es divergente.
(Septiembre 2002, ex. or.)
Solución.-
( )
( ) n
nn
1n
n
n
1n
n n
1n
·
1n
1n
lim
!n
n
!1n
1n
lim
a
a
lim 




 +
+
+
=
+
+
=
∞→
+
∞→
+
∞→
= e > 1, luego por el criterio de
D’Alembert, la serie dada es divergente.
4.- Utilizando el criterio de D’Alembert, demostrar que
∑
∞
=






1n
n
n
!n
es convergente.
(Septiembre 2002, ex. res.)
Solución.-
( )
( )
e
1
1n
n
·
1n
1n
lim
n
!n
1n
!1n
lim
a
a
lim
n
n
n
1n
n
n
1n
n
=





++
+
=
+
+
=
∞→
+
∞→
+
∞→
< 1 luego por el criterio de
D’Alembert, la serie dada es convergente.
5.- Demuestre si es convergente o no la siguiente serie numérica: ∑
∞
=
−
1n
n2
ne (Enero
2003, ex. or.)
Solución.-
Por el criterio de D’Alembert :
( )
( )
0
e
1
·
e
1
·
n
1n
lim
ne
e)1n(
lim
e
n
e
1n
lim
a
a
lim n2n1n
n
n
n
1n
n
n
1n
n
2
2
2
=




 +
=
+
=
+
=
∞→+∞→
+
∞→
+
∞→
< 1
luego la serie es convergente.
UNED. ELCHE. e-mail: imozas@elx.uned.es
TUTORÍA DE MATEMÁTICAS III (2º A.D.E.) http://telefonica.net/web/imm
Ejercicios de series numéricas propuestos en exámenes–2/2–
6.- Demuestre si es convergente o no la siguiente serie numérica:
2
n 2
n 1
n
∞
=
− 
 
 ∑
(Enero 2003, ex. res)
Solución.-
Es divergente ya que no cumple la condición necesaria de convergencia. En efecto:
2
n
n n
n 1
lima lim 1 0
n→∞ →∞
− 
= = ≠ 
 
7. Estudiar el carácter de la serie ( )
n
n
n 2
n 1
∞
=
−∑ (Septiembre 2003, ex. res)
Solución.-
Aplicamos el criterio de Cauchy: ( )n nn
n
n n n
lim a lim n 1 lim n 1 1 1 0
→∞ →∞ →∞
= − = − = − = <1 luego
la serie es convergente.
8. Estudiar el carácter de la siguiente serie: ∑
∞
=
+
1n
n
2
na
1n
, a > 0. (Septiembre 2004, ex.
res)
Solución.-
Aplicamos el criterio de D’Alembert:
( )
( ) ( )[ ]
( )( ) a
1
1n1na
n11n
lim
na
1n
a1n
11n
lim
a
a
lim 2
2
n
n
2
1n
2
n
n
1n
n
=
++
++
+
+
++
=
∞→
+
∞→
+
∞→
.
Hay tres casos:
- si 0 < a < 1 → DIVERGENTE
- si a > 1 → CONVERGENTE
- si a = 1 → DIVERGENTE, por que el término general
n
1n2
+
→ ∞.

Más contenido relacionado

La actualidad más candente

Las propiedades-de-euler-y-los-logaritmos-para
Las propiedades-de-euler-y-los-logaritmos-paraLas propiedades-de-euler-y-los-logaritmos-para
Las propiedades-de-euler-y-los-logaritmos-para
KhriszthianxD
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
Rubens Diaz Pulli
 
Sistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferencialesSistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferenciales
Kike Prieto
 
Primera Ley Y TeoríA CinéTica
Primera Ley Y TeoríA CinéTicaPrimera Ley Y TeoríA CinéTica
Primera Ley Y TeoríA CinéTica
ERICK CONDE
 
Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23
efren1985
 
Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)
daferro
 

La actualidad más candente (20)

David reparado
David reparadoDavid reparado
David reparado
 
Series de taylor
Series de taylorSeries de taylor
Series de taylor
 
Las propiedades-de-euler-y-los-logaritmos-para
Las propiedades-de-euler-y-los-logaritmos-paraLas propiedades-de-euler-y-los-logaritmos-para
Las propiedades-de-euler-y-los-logaritmos-para
 
electricidad y magnetismo ejercicios resueltos Capitulo 1
electricidad y magnetismo  ejercicios resueltos  Capitulo 1electricidad y magnetismo  ejercicios resueltos  Capitulo 1
electricidad y magnetismo ejercicios resueltos Capitulo 1
 
Serie de fourier en cosenos
Serie de fourier en cosenosSerie de fourier en cosenos
Serie de fourier en cosenos
 
Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
 
Grado decimo fisica
Grado decimo fisicaGrado decimo fisica
Grado decimo fisica
 
Semana 4-2mod
Semana  4-2modSemana  4-2mod
Semana 4-2mod
 
Guia de ejercicios
Guia de ejerciciosGuia de ejercicios
Guia de ejercicios
 
Sistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferencialesSistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferenciales
 
Primera Ley Y TeoríA CinéTica
Primera Ley Y TeoríA CinéTicaPrimera Ley Y TeoríA CinéTica
Primera Ley Y TeoríA CinéTica
 
Campo+Electrico23
Campo+Electrico23Campo+Electrico23
Campo+Electrico23
 
TRABAJO FINAL TCM.pdf
TRABAJO FINAL TCM.pdfTRABAJO FINAL TCM.pdf
TRABAJO FINAL TCM.pdf
 
Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)
 
Ecuaciones Integrodiferenciales
Ecuaciones IntegrodiferencialesEcuaciones Integrodiferenciales
Ecuaciones Integrodiferenciales
 
Solcap1
Solcap1Solcap1
Solcap1
 
Problemas resueltos de relatividad
Problemas resueltos de relatividadProblemas resueltos de relatividad
Problemas resueltos de relatividad
 
Cap 3 ley de gauss
Cap 3 ley de gaussCap 3 ley de gauss
Cap 3 ley de gauss
 
MODELO MATEMÁTICO - DEFLEXIÓN DE UNA VIGA UNIFORME (Expansión de Funciones Pr...
MODELO MATEMÁTICO - DEFLEXIÓN DE UNA VIGA UNIFORME (Expansión de Funciones Pr...MODELO MATEMÁTICO - DEFLEXIÓN DE UNA VIGA UNIFORME (Expansión de Funciones Pr...
MODELO MATEMÁTICO - DEFLEXIÓN DE UNA VIGA UNIFORME (Expansión de Funciones Pr...
 

Similar a Ejercicios de series numéricas

Sucesiones recurrencia induccion
Sucesiones recurrencia induccionSucesiones recurrencia induccion
Sucesiones recurrencia induccion
Pavel Aliaga
 
Analisis
AnalisisAnalisis
Analisis
UNI
 
Taller investigación de operaciones ii segundo seguimiento (1)
Taller investigación de operaciones ii   segundo seguimiento (1)Taller investigación de operaciones ii   segundo seguimiento (1)
Taller investigación de operaciones ii segundo seguimiento (1)
Oscar José Ospino Ayala
 
Funciones variable compleja
Funciones variable complejaFunciones variable compleja
Funciones variable compleja
hernanalonso
 
Funciones variable compleja
Funciones variable complejaFunciones variable compleja
Funciones variable compleja
hernanalonso
 

Similar a Ejercicios de series numéricas (16)

Sucesiones recurrencia induccion
Sucesiones recurrencia induccionSucesiones recurrencia induccion
Sucesiones recurrencia induccion
 
Bloque2b series numericas
Bloque2b series numericasBloque2b series numericas
Bloque2b series numericas
 
Series1resueltas
Series1resueltasSeries1resueltas
Series1resueltas
 
Sumatorias
SumatoriasSumatorias
Sumatorias
 
Analisis
AnalisisAnalisis
Analisis
 
Inducción matemática
Inducción matemáticaInducción matemática
Inducción matemática
 
Series Infinitas, series de potencias y criterios de convergencia.
Series Infinitas, series de potencias y criterios de convergencia.Series Infinitas, series de potencias y criterios de convergencia.
Series Infinitas, series de potencias y criterios de convergencia.
 
TALLER unidad 1 y 2.pdf
TALLER unidad 1 y 2.pdfTALLER unidad 1 y 2.pdf
TALLER unidad 1 y 2.pdf
 
Resolucion de Sistemas de Ecuaciones Lineales
Resolucion de Sistemas de Ecuaciones LinealesResolucion de Sistemas de Ecuaciones Lineales
Resolucion de Sistemas de Ecuaciones Lineales
 
20 calculo-para-la-ingenieria-salvador-vera-tomo-ii
20 calculo-para-la-ingenieria-salvador-vera-tomo-ii20 calculo-para-la-ingenieria-salvador-vera-tomo-ii
20 calculo-para-la-ingenieria-salvador-vera-tomo-ii
 
Unidad 3 ecuaciones
Unidad 3  ecuaciones Unidad 3  ecuaciones
Unidad 3 ecuaciones
 
Taller investigación de operaciones ii segundo seguimiento (1)
Taller investigación de operaciones ii   segundo seguimiento (1)Taller investigación de operaciones ii   segundo seguimiento (1)
Taller investigación de operaciones ii segundo seguimiento (1)
 
Funciones variable compleja
Funciones variable complejaFunciones variable compleja
Funciones variable compleja
 
Funciones variable compleja
Funciones variable complejaFunciones variable compleja
Funciones variable compleja
 
TE1-PE-2014-2S
TE1-PE-2014-2STE1-PE-2014-2S
TE1-PE-2014-2S
 
Números cuánticos
Números  cuánticosNúmeros  cuánticos
Números cuánticos
 

Más de Kike Prieto

Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenEcuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Kike Prieto
 
Ecuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer ordenEcuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer orden
Kike Prieto
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
Kike Prieto
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por series
Kike Prieto
 
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesEcuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Kike Prieto
 
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Kike Prieto
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de Solución
Kike Prieto
 
Introduccion Ecuaciones Diferenciales
Introduccion Ecuaciones DiferencialesIntroduccion Ecuaciones Diferenciales
Introduccion Ecuaciones Diferenciales
Kike Prieto
 
Series numéricas
Series numéricasSeries numéricas
Series numéricas
Kike Prieto
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de Fourier
Kike Prieto
 
Fórmulas de Taylor
Fórmulas de TaylorFórmulas de Taylor
Fórmulas de Taylor
Kike Prieto
 
Criterios Series infinitas
Criterios Series infinitasCriterios Series infinitas
Criterios Series infinitas
Kike Prieto
 
Aplicaciones de la Integral
Aplicaciones de la IntegralAplicaciones de la Integral
Aplicaciones de la Integral
Kike Prieto
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
Kike Prieto
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
Kike Prieto
 
Capitulo 1.laintegralindefinida
Capitulo 1.laintegralindefinidaCapitulo 1.laintegralindefinida
Capitulo 1.laintegralindefinida
Kike Prieto
 
Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricas
Kike Prieto
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
Kike Prieto
 

Más de Kike Prieto (20)

Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenEcuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
 
Ecuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer ordenEcuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer orden
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por series
 
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesEcuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
 
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de Solución
 
Introduccion Ecuaciones Diferenciales
Introduccion Ecuaciones DiferencialesIntroduccion Ecuaciones Diferenciales
Introduccion Ecuaciones Diferenciales
 
Series numéricas
Series numéricasSeries numéricas
Series numéricas
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de Fourier
 
Fórmulas de Taylor
Fórmulas de TaylorFórmulas de Taylor
Fórmulas de Taylor
 
Criterios Series infinitas
Criterios Series infinitasCriterios Series infinitas
Criterios Series infinitas
 
Series
SeriesSeries
Series
 
Aplicaciones de la Integral
Aplicaciones de la IntegralAplicaciones de la Integral
Aplicaciones de la Integral
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
 
Sucesiones
SucesionesSucesiones
Sucesiones
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
 
Capitulo 1.laintegralindefinida
Capitulo 1.laintegralindefinidaCapitulo 1.laintegralindefinida
Capitulo 1.laintegralindefinida
 
Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricas
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
 

Último

Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
Gonella
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Demetrio Ccesa Rayme
 

Último (20)

En un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdfEn un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdf
 
flujo de materia y energía ecosistemas.
flujo de materia y  energía ecosistemas.flujo de materia y  energía ecosistemas.
flujo de materia y energía ecosistemas.
 
Botiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdfBotiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdf
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
 
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
El Futuro de la Educacion Digital  JS1  Ccesa007.pdfEl Futuro de la Educacion Digital  JS1  Ccesa007.pdf
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
 
Libros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfLibros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdf
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
 
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdfsesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
 
Motivados por la esperanza. Esperanza en Jesús
Motivados por la esperanza. Esperanza en JesúsMotivados por la esperanza. Esperanza en Jesús
Motivados por la esperanza. Esperanza en Jesús
 
TEMA EGIPTO.pdf. Presentación civilización
TEMA EGIPTO.pdf. Presentación civilizaciónTEMA EGIPTO.pdf. Presentación civilización
TEMA EGIPTO.pdf. Presentación civilización
 
Proyecto de Participación Estudiantil Completo - Bachillerato Ecuador
Proyecto de Participación Estudiantil Completo - Bachillerato EcuadorProyecto de Participación Estudiantil Completo - Bachillerato Ecuador
Proyecto de Participación Estudiantil Completo - Bachillerato Ecuador
 

Ejercicios de series numéricas

  • 1. UNED. ELCHE. e-mail: imozas@elx.uned.es TUTORÍA DE MATEMÁTICAS III (2º A.D.E.) http://telefonica.net/web/imm Ejercicios de series numéricas propuestos en exámenes–1/2– EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES 1.- Estudie el carácter de la serie numérica ∑ ∞ =1n n 1 . (Febrero 2002, ex. or.) Solución.- Puesto que n 1 n 1 ≥ , n = 1, 2, 3, ....y la serie ∑ ∞ =1n n 1 es divergente, la serie propuesta será divergente. 2.- Estudiar el carácter de ∑ ∞ =       1n nln 2 1 .(Febrero 2002, ex. res.) Solución.- 2ln n < eln n = n ⇒ n 1 2 1 nln ≥ , n = 1, 2, 3, ...., luego la serie propuesta diverge. 3.- Utilizando el criterio de D’Alembert, demostrar que ∑ ∞ =       1n n !n n es divergente. (Septiembre 2002, ex. or.) Solución.- ( ) ( ) n nn 1n n n 1n n n 1n · 1n 1n lim !n n !1n 1n lim a a lim       + + + = + + = ∞→ + ∞→ + ∞→ = e > 1, luego por el criterio de D’Alembert, la serie dada es divergente. 4.- Utilizando el criterio de D’Alembert, demostrar que ∑ ∞ =       1n n n !n es convergente. (Septiembre 2002, ex. res.) Solución.- ( ) ( ) e 1 1n n · 1n 1n lim n !n 1n !1n lim a a lim n n n 1n n n 1n n =      ++ + = + + = ∞→ + ∞→ + ∞→ < 1 luego por el criterio de D’Alembert, la serie dada es convergente. 5.- Demuestre si es convergente o no la siguiente serie numérica: ∑ ∞ = − 1n n2 ne (Enero 2003, ex. or.) Solución.- Por el criterio de D’Alembert : ( ) ( ) 0 e 1 · e 1 · n 1n lim ne e)1n( lim e n e 1n lim a a lim n2n1n n n n 1n n n 1n n 2 2 2 =      + = + = + = ∞→+∞→ + ∞→ + ∞→ < 1 luego la serie es convergente.
  • 2. UNED. ELCHE. e-mail: imozas@elx.uned.es TUTORÍA DE MATEMÁTICAS III (2º A.D.E.) http://telefonica.net/web/imm Ejercicios de series numéricas propuestos en exámenes–2/2– 6.- Demuestre si es convergente o no la siguiente serie numérica: 2 n 2 n 1 n ∞ = −     ∑ (Enero 2003, ex. res) Solución.- Es divergente ya que no cumple la condición necesaria de convergencia. En efecto: 2 n n n n 1 lima lim 1 0 n→∞ →∞ −  = = ≠    7. Estudiar el carácter de la serie ( ) n n n 2 n 1 ∞ = −∑ (Septiembre 2003, ex. res) Solución.- Aplicamos el criterio de Cauchy: ( )n nn n n n n lim a lim n 1 lim n 1 1 1 0 →∞ →∞ →∞ = − = − = − = <1 luego la serie es convergente. 8. Estudiar el carácter de la siguiente serie: ∑ ∞ = + 1n n 2 na 1n , a > 0. (Septiembre 2004, ex. res) Solución.- Aplicamos el criterio de D’Alembert: ( ) ( ) ( )[ ] ( )( ) a 1 1n1na n11n lim na 1n a1n 11n lim a a lim 2 2 n n 2 1n 2 n n 1n n = ++ ++ + + ++ = ∞→ + ∞→ + ∞→ . Hay tres casos: - si 0 < a < 1 → DIVERGENTE - si a > 1 → CONVERGENTE - si a = 1 → DIVERGENTE, por que el término general n 1n2 + → ∞.