SlideShare una empresa de Scribd logo
Universidad De La Amazonia

Parcial 3
Matem´ticas De Control Y
a
Comunicaci´n
o

Author:
Miguel Leonardo
´
Sanchez Fajardo

Supervisor:
˜
Prof. Jorge E. Trivino
Macias

17 de octubre de 2013
1. Para f (x) =

PREGUNTAS

 0, si −π ≤ x ≤ 0


x, si 0 ≤ x ≤ π

a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie
converge a f en (−π, π).
b) Pruebe que esta serie se puede integrar t´rmino a t´rmino.
e
e
c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo
x

f (t) dt en [−π, π]

en series trigonom´trica para
e
−π

2. Sea f (x) = x sen x , para −π ≤ x ≤ π.

a) Escriba la serie de Fourier para f en [−π, π].
b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice
e
e
´ste hecho para obtener el desarrollo de Fourier de: sen x + x cos x
e
en [−π, π].
∞

3. Encuentre la suma de la serie
n=1

(−1)n
.
4n2 − 1

SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y
escoja un valor adecuado de x.

OBSERVACION: El documento fu´ elaborado mediante el software
e
a
EX y las gr´ficas fueron realizadas y editadas mediante Geogeobra 4.2.
Los ejercicios fueron hechos con las f´rmulas del libro Matem´ticas Avano
a
zadas para Ingenieria - Peter O’Neil - 5ta Edici´n con el fin de evitar
o
problemas, mal entendidos (copia del trabajo), discusiones.
A
LT

1
1. Para f (x) =

DESARROLLO

 0, si −π ≤ x ≤ 0


x, si 0 ≤ x ≤ π

a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie
converge a f en [−π, π]. RESPUESTA:
∞

1
bn sen
f (x) = a0 +
2
n=1
1
L
1
=
π
x2
=
2π
π
=
2

u = x;

an =
=
=
=
=

L

f (x) cos
−L

+ an cos

nπx
L

π

f (x) dx

a0 =

1
an =
L

nπx
L

−π
0

1
0 dx +
π
−π

π

x dx
0

π
0

nπx
L

dx

du = dx | dv = cos(nx) dx;

v=

0
π
1
nπx
1
0 cos
dx +
x cos
π −π
π
π 0
π
π
1
1
x sen(nx) −
sen(nx)dx
nπ
0
0 nπ
π
1
cos(nx)
n2 π
0
1
cos(nπ) − 1
n2 π
1
(−1)n − 1 .
2 π
n

2

1
sen(nx)
n
nπx
π

dx
bn =
u = x;

1
L

L

f (x) sen
−L

nπx
L

du = dx | dv = sen(nx) dx;

dx.
1
v = − cos(nx)
n

π
1
0 sen(nx)dx +
x sen(nx)dx
π 0
−π
π
π
1
1
x cos(nx) +
=−
cos(nx) dx
nπ
0 nπ 0
π
1
1
π cos(nπ) − 0 + 2
sen(nx)
=−
nπ
n π
0
1
1
= − cos(nπ) + 2
sen(nπ) − 0
n
nπ
1
= (−1)n+1 .
n

1
bn =
π

0

La serie general de fourier para f (x) es:
∞

f (x) =

π
(−1)n+1
(−1)n − 1
+
sen(nx) +
cos(nx)
4 n=1
n
n2 π

Para probar la convergencia de la serie de fourier de f (x) es necesario
comprobar que f sea continua a tramos. Para ello, es necesario graficar
la funci´n dada y comprobar las hip´tesis del teorema de convergencia
o
o
de serie de fourier.

Comprobamos si f (x) es continua a tramos.
3
• Comprobamos que tenga un l´
ımite finito de discontinuidades.
En este caso, f (x) tiene un punto de discontinuidad que es x0 = 0.
• Comprobamos que existan los l´
ımites en los extremos. Entonces
+
f (−π ) = 0.
f (π − ) = π.
• Comprobamos que existan los l´
ımites laterales en el punto de discontinuidad.
f (0− ) = 0.
f (0+ ) = 0.
Dado que f (x) cumple las 3 hip´tesis del teorema, podemos decir con
o
seguridad que f (x) es continua a tramos. Luego f (x) converge a la
funci´n Φ que est´ dada por:
o
a

Φ=


 0, −π ≤ x ≤ 0.






 0, x = 0.


 x, 0 < x ≤ π.





 π


 , x ± π.
2

b) Pruebe que esta serie se puede integrar t´rmino a t´rmino.
e
e
RESPUESTA: La serie se puede integrar t´rtmino a t´rmino porque
e
e
f (x) es una funci´n continua a tramos en [−L, L], con serie de Fourier:
o
∞

1
f (x) = a0 +
an cos
2
n=1

nπx
L

+ bn sen

nπx
L

.

c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo en
x

series trigonom´trica para
e

f (t) dt en [−π, π]
−π

RESPUESTA: Entonces para cada x con −L ≤ x ≤ L:

4
x

∞

x

π
dt +
4
n=1

f (t) dt =
−L

−π

x

π
f (t) dt =
4
−L
x

f (t) dt =
−L

∞

x

dt +
−π

π
t
4

n=1

∞

x

+
−π

n=1

x
−π

(−1)n − 1
cos(nt)dt +
n2 π

(−1)n − 1
n2 π

x

cos(nt)dt +
−π

(−1)n − 1
sen(nt)
n3 π

x

+
−π

x
−π

(−1)n+1
sen(nt)dt
n

(−1)n+1
n

x

sen(nt)dt
−π

(−1)n+2
cos(nt)
n2

x
−π

∞

x

π
(−1)n+1 + 1
f (t) dt =
x+π +
sen(nx) + sen(nπ)
4
n3 π
−L
n=1

+

x

(−1)n+2
cos(nx) − cos(nπ)
n2
∞

(−1)n+1 + 1
(−1)n+2
π(x + π)
+
cos(nx) − (−1)n .
f (t) dt =
sen(nx) +
3π
2
4
n
n
−L
n=1

5
2. Sea f (x) = x sen x , para −π ≤ x ≤ π.
a) Escriba la serie de Fourier para f en [−π, π]. RESPUESTA:
∞

f (x) =

1
nπx
nπx
a0 +
bn sen
+ an cos
2
L
L
n=1
π

1
a0 =
L
1
=
π
2
=
π
u = x;

x sen x dx
−π
π

x sen x dx
0

du = dx | dv = sen x dx;

2
π
2
=−
π
2
=−
π
2
=−
π
= 2.

a0 = −

π

+

x cos x
0

2
π

v = − cos x

π

cos xdx
0

2
(π) cos(π) − (0) cos(0) + sen x
π
2
(π) cos(π) + sen(π) − sen(0)
π

π
0

[−π]

1
L
1
=
π
2
=
π

L

an =

u = x;

f (x) dx
−π
π

f (x) cos
−L
π

nπx
L

dx

x sen(x) cos(nx)dx
−π
π

x sen(x) cos(nx)dx
0

du = dx | dv = sen(x(1 ± n)) dx;
6

v=−

1
cos(x(1 ± n))
n±1
1
π
1
=
π

π

x sen(x(1 + n)) + sen(x(1 − n)) dx

an =

0
π

x sen(x(1 + n)) dx +
0

1
π

π

x sen(x(1 − n)) dx
0

π

π
1
1
=−
x cos(x(1 + n)) +
cos(x(1 + n)) dx
π(1 + n)
0 π(1 + n) 0
π
π
1
1
x cos(x(1 − n)) +
cos(x(1 − n)) dx
−
π(1 − n)
0 π(1 − n) 0
π
1
1
=−
(π) cos(π(1 + n)) − (0) cos(0(1 + n)) +
sen(x(1 + n))
π(1 + n)
π(1 + n)2
0
π
1
1
−
(π) cos(π(1 − n)) − (0) cos(0(1 + n)) +
sen(x(1 − n))
π(1 + n)
π(1 − n)2
0
1
1
=−
π cos(π(1 + n)) +
sen(π(1 + n)) − sen(0(1 + n))
π(1 + n)
π(1 + n)2
1
1
−
(π) cos(π(1 − n)) +
sen(π(1 − n)) − sen(0(1 − n))
π(1 + n)
π(1 − n)2
1
1
(π) cos(π(1 + n)) +
=−
sen(π(1 + n))
π(1 + n)
π(1 + n)2
1
1
(π) cos(π(1 − n)) +
sen(π(1 − n))
−
π(1 + n)
π(1 − n)2
1
1
=−
(π)(−1)n cos(π) +
(−1)n sen(π)
π(1 + n)
π(1 + n)2
1
1
−
π(−1)n cos(π) +
(−1)n sen(π)
π(1 + n)
π(1 − n)2
(−1)n+1
.
= 2
n −1

1
L
1
=
π

L

bn =

f (x) sen
−L
π

nπx
L

dx

x sen(x) sen(nx)dx
−π

Como los l´
ımites son sim´tricos y la funci´n es impar dado que x y sen
e
o
son funciones impares y seg´n las f´rmulas
u
o
impar ∗ impar = par
7
Pero como son 3 funciones impares entonces
impar ∗ impar ∗ impar = par ∗ impar = impar
Las funciones impares son = 0. Por lo tanto: bn = 0

La serie general de fourier para f (x) es:
∞

f (x) = 1 +
n=1

(−1)n+1
cos(nx)
n2 − 1

b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice ´ste
e
e
e
hecho para obtener el desarrollo de Fourier de:
sen x + x cos x en [−π, π]
RESPUESTA:
Comprobamos si f (x) es continua a tramos. Para ello, es necesario comprobar si cumple las 3 hip´tesis del teorema.
o

• Comprobamos que tenga un l´
ımite finito de discontinuidades. En
este caso, f (x) tiene cero puntos de discontinuidad.

8
• Comprobamos que existan los l´
ımites en los extremos.
f (−π + ) = 0
f (π − ) = 0
• Como f (x) es continua entonces no hay problema en el punto de
discontinuidad.
Por lo tanto, comprobamos que f (x) es continua a tramos. Adem´s
a
f (−π) = f (π). Luego el siguiente paso es encontrar la derivada de
f (x).
f (x) = x cos x + sen x en[−π, π].
Comprobamos si f (x) es continua a tramos.
• Comprobamos que tenga un l´
ımite finito de discontinuidades. En
este caso, f (x) tiene cero puntos de discontinuidad.
• Comprobamos que existan los l´
ımites en los extremos.
+
f (−π ) = 0
f (π − ) = 0
Comprobamos que f (x) es continua a tramos. Despues, comprobamos
la existencia de f (x). Entonces:
f (x) = 2 cos x − x sen x en [−π, π].

Entonces f (x) es igual a la serie de fourier para [−π, π].
∞

f (x) =
n=1

nπx
nπx
nπ
−an sen
+ bn cos
L
L
L
∞

x cos x + sen x = −

n
n=1

9

(−1)n+1
sen(nx)
n2 − 1
∞

3. Encuentre la suma de la serie
n=1

(−1)n
4n2 − 1

SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y
escoja un valor adecuado de x.
RESPUESTA:
∞

Serie de Cosenos: =⇒

nπx
1
a0 +
an cos
.
2
L
n=1

a0 =

2
π

π

sen(x)dx
0
π

2
cos(x)
π
0
2
= − cos(π) − cos(0)
π
2
= − (1 − 1)
π
=0

=−

10

π
0
an =
=
=
=
=
=
=
=
=

2
L
2
π
1
π
1
π
1
π
1
π
1
π
1
π
1
π

L

f (x) cos
0

nπx
L

dx

π

sen(x) cos(nx)dx
0
π

sen(x + nx) + sen(x − nx) dx
0
π

sen(x(1 + n)) + sen(x(1 − n)) dx
0
π

−1
1
cos(x(1 + n)) −
cos(x(1 − n))
1+n
1−n
0
−1
1
1
cos(π(1 + n)) − cos(0) +
cos(π(1 − n)) − cos(0)
1+n
π 1−n
−1
1
1
(−1)1+n − 1 +
(−1)1−n − 1
1+n
π 1−n
(−1)2+n
1
1 (−1)−n
1
+
+
+
1+n
1+n π 1−n
1−n
2+n
−n
(−1)
2 (−1)
+
1+n
1 + n2 1 − n

Serie de Cosenos:
∞

1 (−1)2+n
1
2
(−1)−n
(0) +
+
+
cos(nx)
2
π 1+n
1 − n2
1−n
n=1
∞

n=1

1 (−1)2+n
2
(−1)−n
+
+
cos(nx)
π 1+n
1 − n2
1−n

Si x = π, entonces
∞

n=1
∞

n=1

1 (−1)2+n
2
(−1)−n
+
+
cos(nπ)
π 1+n
1 − n2
1−n
1 (−1)2+n
2
(−1)−n
+
+
(−1)n
2
π 1+n
1−n
1−n

11

Más contenido relacionado

La actualidad más candente

52983063 series-de-fourier
52983063 series-de-fourier52983063 series-de-fourier
52983063 series-de-fourier
Miharbi Etaraz Anem
 
Ejercicios resueltos 2011 series de fourier
Ejercicios resueltos 2011 series de fourierEjercicios resueltos 2011 series de fourier
Ejercicios resueltos 2011 series de fourier
FENIXMSN
 
Analisis de señales
Analisis de señalesAnalisis de señales
Analisis de señales
mariadanielaalvarez
 
11 Transformada De Laplace
11 Transformada De Laplace11 Transformada De Laplace
11 Transformada De Laplace
kahtya
 
Función de transferencia y diagrama de bloques.
Función de transferencia y diagrama de bloques.Función de transferencia y diagrama de bloques.
Función de transferencia y diagrama de bloques.
DanielNavas32
 
Tabla laplace
Tabla laplaceTabla laplace
Tabla laplace
JORGE
 
Ejercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceEjercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de Laplace
Jeickson Sulbaran
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
VanneGalvis
 
Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)
ERICK CONDE
 
unidad 4 ecuaciones diferenciales
 unidad 4 ecuaciones diferenciales unidad 4 ecuaciones diferenciales
unidad 4 ecuaciones diferenciales
Santos Uriel Garcia Hurtado
 
Ejercicios resueltos 2011
Ejercicios resueltos 2011Ejercicios resueltos 2011
Ejercicios resueltos 2011
Deyvid Atens
 
Ecuacion de cauchy euler
Ecuacion de cauchy euler Ecuacion de cauchy euler
Ecuacion de cauchy euler
seralb
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
Kike Prieto
 
Aplicación de las ecuaciones diferenciales de orden superior
Aplicación de las ecuaciones diferenciales de orden superiorAplicación de las ecuaciones diferenciales de orden superior
Aplicación de las ecuaciones diferenciales de orden superior
jesus sivira
 
05 respuesta en el tiempo de un sistema de control
05   respuesta en el tiempo de un sistema de control05   respuesta en el tiempo de un sistema de control
05 respuesta en el tiempo de un sistema de control
reneej748999
 
Señales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLABSeñales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLAB
Jose Agustin Estrada
 
Series de fourier 22 Ejercicios Resueltos
Series de fourier 22 Ejercicios ResueltosSeries de fourier 22 Ejercicios Resueltos
Series de fourier 22 Ejercicios Resueltos
Joe Arroyo Suárez
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
ERICK CONDE
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
Santiago Salinas Lopez
 
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
roscoro
 

La actualidad más candente (20)

52983063 series-de-fourier
52983063 series-de-fourier52983063 series-de-fourier
52983063 series-de-fourier
 
Ejercicios resueltos 2011 series de fourier
Ejercicios resueltos 2011 series de fourierEjercicios resueltos 2011 series de fourier
Ejercicios resueltos 2011 series de fourier
 
Analisis de señales
Analisis de señalesAnalisis de señales
Analisis de señales
 
11 Transformada De Laplace
11 Transformada De Laplace11 Transformada De Laplace
11 Transformada De Laplace
 
Función de transferencia y diagrama de bloques.
Función de transferencia y diagrama de bloques.Función de transferencia y diagrama de bloques.
Función de transferencia y diagrama de bloques.
 
Tabla laplace
Tabla laplaceTabla laplace
Tabla laplace
 
Ejercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceEjercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de Laplace
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
 
Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)
 
unidad 4 ecuaciones diferenciales
 unidad 4 ecuaciones diferenciales unidad 4 ecuaciones diferenciales
unidad 4 ecuaciones diferenciales
 
Ejercicios resueltos 2011
Ejercicios resueltos 2011Ejercicios resueltos 2011
Ejercicios resueltos 2011
 
Ecuacion de cauchy euler
Ecuacion de cauchy euler Ecuacion de cauchy euler
Ecuacion de cauchy euler
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
 
Aplicación de las ecuaciones diferenciales de orden superior
Aplicación de las ecuaciones diferenciales de orden superiorAplicación de las ecuaciones diferenciales de orden superior
Aplicación de las ecuaciones diferenciales de orden superior
 
05 respuesta en el tiempo de un sistema de control
05   respuesta en el tiempo de un sistema de control05   respuesta en el tiempo de un sistema de control
05 respuesta en el tiempo de un sistema de control
 
Señales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLABSeñales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLAB
 
Series de fourier 22 Ejercicios Resueltos
Series de fourier 22 Ejercicios ResueltosSeries de fourier 22 Ejercicios Resueltos
Series de fourier 22 Ejercicios Resueltos
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
 
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
 

Similar a Ejercicios serie de fourier

Fourier.pdf
Fourier.pdfFourier.pdf
Transparencias tema4
Transparencias tema4Transparencias tema4
Transparencias tema4
jose manuel lopez vidal
 
Clase del jueves 24 de abril de 2014
Clase del jueves 24 de abril de 2014Clase del jueves 24 de abril de 2014
Clase del jueves 24 de abril de 2014
Gonzalo Jiménez
 
Series de taylor y fourier
Series de taylor y fourierSeries de taylor y fourier
Series de taylor y fourier
nilsa
 
Ampte8
Ampte8Ampte8
Ampte8
Jos Gonzlez7
 
Mr1i 753-2007-2
Mr1i 753-2007-2Mr1i 753-2007-2
Mr1i 753-2007-2
Pablo Enrique Diez Rincon
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por series
Kike Prieto
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylor
Fernando Maguna
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
Kike Prieto
 
Interpolación método de Lagrange
Interpolación método de LagrangeInterpolación método de Lagrange
Interpolación método de Lagrange
Kike Prieto
 
Polinomios taylor
Polinomios taylorPolinomios taylor
Polinomios taylor
Leandro __
 
Polinomios taylor
Polinomios taylorPolinomios taylor
Polinomios taylor
Leandro ___
 
William
WilliamWilliam
Examen
ExamenExamen
Examen
carmacaya
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newton
rjvillon
 
Tema 5 : Resolución mediante series
Tema 5 : Resolución mediante seriesTema 5 : Resolución mediante series
Tema 5 : Resolución mediante series
Nathaly Guanda
 
Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativos
fabianchopinto
 
Sistema de ed de primer orden
Sistema de ed de primer ordenSistema de ed de primer orden
Sistema de ed de primer orden
Cristian Monrroy Fuentes
 
Interpolacion lagrange
Interpolacion lagrangeInterpolacion lagrange
Interpolacion lagrange
mat7731
 
Desarrollos en serie de Taylor
Desarrollos en serie de TaylorDesarrollos en serie de Taylor
Desarrollos en serie de Taylor
Kike Prieto
 

Similar a Ejercicios serie de fourier (20)

Fourier.pdf
Fourier.pdfFourier.pdf
Fourier.pdf
 
Transparencias tema4
Transparencias tema4Transparencias tema4
Transparencias tema4
 
Clase del jueves 24 de abril de 2014
Clase del jueves 24 de abril de 2014Clase del jueves 24 de abril de 2014
Clase del jueves 24 de abril de 2014
 
Series de taylor y fourier
Series de taylor y fourierSeries de taylor y fourier
Series de taylor y fourier
 
Ampte8
Ampte8Ampte8
Ampte8
 
Mr1i 753-2007-2
Mr1i 753-2007-2Mr1i 753-2007-2
Mr1i 753-2007-2
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por series
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylor
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Interpolación método de Lagrange
Interpolación método de LagrangeInterpolación método de Lagrange
Interpolación método de Lagrange
 
Polinomios taylor
Polinomios taylorPolinomios taylor
Polinomios taylor
 
Polinomios taylor
Polinomios taylorPolinomios taylor
Polinomios taylor
 
William
WilliamWilliam
William
 
Examen
ExamenExamen
Examen
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newton
 
Tema 5 : Resolución mediante series
Tema 5 : Resolución mediante seriesTema 5 : Resolución mediante series
Tema 5 : Resolución mediante series
 
Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativos
 
Sistema de ed de primer orden
Sistema de ed de primer ordenSistema de ed de primer orden
Sistema de ed de primer orden
 
Interpolacion lagrange
Interpolacion lagrangeInterpolacion lagrange
Interpolacion lagrange
 
Desarrollos en serie de Taylor
Desarrollos en serie de TaylorDesarrollos en serie de Taylor
Desarrollos en serie de Taylor
 

Más de Miguel Leonardo Sánchez Fajardo

Teoría cognitiva
Teoría cognitivaTeoría cognitiva
Infoxicación y uso excesivo de tecnologías
Infoxicación y uso excesivo de tecnologíasInfoxicación y uso excesivo de tecnologías
Infoxicación y uso excesivo de tecnologías
Miguel Leonardo Sánchez Fajardo
 
Presentación: Amazonia continental
Presentación: Amazonia continentalPresentación: Amazonia continental
Presentación: Amazonia continental
Miguel Leonardo Sánchez Fajardo
 
Presentación: Ciencia en la Edad Media
Presentación: Ciencia en la Edad MediaPresentación: Ciencia en la Edad Media
Presentación: Ciencia en la Edad Media
Miguel Leonardo Sánchez Fajardo
 
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Miguel Leonardo Sánchez Fajardo
 
Tutorial de Python
Tutorial de PythonTutorial de Python
INTERNET EN COLOMBIA
INTERNET EN COLOMBIAINTERNET EN COLOMBIA
INTERNET EN COLOMBIA
Miguel Leonardo Sánchez Fajardo
 
PROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEALPROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEAL
Miguel Leonardo Sánchez Fajardo
 
Recetario de Látex
Recetario de LátexRecetario de Látex
Sistema de Gestión de Base de Datos
Sistema de Gestión de Base de DatosSistema de Gestión de Base de Datos
Sistema de Gestión de Base de Datos
Miguel Leonardo Sánchez Fajardo
 
BASE DE DATOS PARA EMPRESA PORCINA
BASE DE DATOS PARA EMPRESA PORCINABASE DE DATOS PARA EMPRESA PORCINA
BASE DE DATOS PARA EMPRESA PORCINA
Miguel Leonardo Sánchez Fajardo
 
Diccionario ilustrado de conceptos matemáticos
Diccionario ilustrado de conceptos matemáticosDiccionario ilustrado de conceptos matemáticos
Diccionario ilustrado de conceptos matemáticos
Miguel Leonardo Sánchez Fajardo
 
Investigación cuantitativa (exposición)
Investigación cuantitativa (exposición)Investigación cuantitativa (exposición)
Investigación cuantitativa (exposición)
Miguel Leonardo Sánchez Fajardo
 
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Miguel Leonardo Sánchez Fajardo
 
Presentación: Reducción del espacio de color
Presentación: Reducción del espacio de colorPresentación: Reducción del espacio de color
Presentación: Reducción del espacio de color
Miguel Leonardo Sánchez Fajardo
 
Marco Lógico (Exposición)
Marco Lógico (Exposición)Marco Lógico (Exposición)
Marco Lógico (Exposición)
Miguel Leonardo Sánchez Fajardo
 
Ensayo matrimonio gay
Ensayo matrimonio gayEnsayo matrimonio gay
Ensayo matrimonio gay
Miguel Leonardo Sánchez Fajardo
 
Problemas De Vibraciones Y Ondas Resueltos
Problemas De Vibraciones Y Ondas ResueltosProblemas De Vibraciones Y Ondas Resueltos
Problemas De Vibraciones Y Ondas Resueltos
Miguel Leonardo Sánchez Fajardo
 
Diagramas De Caso De Uso
Diagramas De Caso De UsoDiagramas De Caso De Uso
Diagramas De Caso De Uso
Miguel Leonardo Sánchez Fajardo
 
Principio De Huygens
Principio De HuygensPrincipio De Huygens
Principio De Huygens
Miguel Leonardo Sánchez Fajardo
 

Más de Miguel Leonardo Sánchez Fajardo (20)

Teoría cognitiva
Teoría cognitivaTeoría cognitiva
Teoría cognitiva
 
Infoxicación y uso excesivo de tecnologías
Infoxicación y uso excesivo de tecnologíasInfoxicación y uso excesivo de tecnologías
Infoxicación y uso excesivo de tecnologías
 
Presentación: Amazonia continental
Presentación: Amazonia continentalPresentación: Amazonia continental
Presentación: Amazonia continental
 
Presentación: Ciencia en la Edad Media
Presentación: Ciencia en la Edad MediaPresentación: Ciencia en la Edad Media
Presentación: Ciencia en la Edad Media
 
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
 
Tutorial de Python
Tutorial de PythonTutorial de Python
Tutorial de Python
 
INTERNET EN COLOMBIA
INTERNET EN COLOMBIAINTERNET EN COLOMBIA
INTERNET EN COLOMBIA
 
PROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEALPROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEAL
 
Recetario de Látex
Recetario de LátexRecetario de Látex
Recetario de Látex
 
Sistema de Gestión de Base de Datos
Sistema de Gestión de Base de DatosSistema de Gestión de Base de Datos
Sistema de Gestión de Base de Datos
 
BASE DE DATOS PARA EMPRESA PORCINA
BASE DE DATOS PARA EMPRESA PORCINABASE DE DATOS PARA EMPRESA PORCINA
BASE DE DATOS PARA EMPRESA PORCINA
 
Diccionario ilustrado de conceptos matemáticos
Diccionario ilustrado de conceptos matemáticosDiccionario ilustrado de conceptos matemáticos
Diccionario ilustrado de conceptos matemáticos
 
Investigación cuantitativa (exposición)
Investigación cuantitativa (exposición)Investigación cuantitativa (exposición)
Investigación cuantitativa (exposición)
 
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
 
Presentación: Reducción del espacio de color
Presentación: Reducción del espacio de colorPresentación: Reducción del espacio de color
Presentación: Reducción del espacio de color
 
Marco Lógico (Exposición)
Marco Lógico (Exposición)Marco Lógico (Exposición)
Marco Lógico (Exposición)
 
Ensayo matrimonio gay
Ensayo matrimonio gayEnsayo matrimonio gay
Ensayo matrimonio gay
 
Problemas De Vibraciones Y Ondas Resueltos
Problemas De Vibraciones Y Ondas ResueltosProblemas De Vibraciones Y Ondas Resueltos
Problemas De Vibraciones Y Ondas Resueltos
 
Diagramas De Caso De Uso
Diagramas De Caso De UsoDiagramas De Caso De Uso
Diagramas De Caso De Uso
 
Principio De Huygens
Principio De HuygensPrincipio De Huygens
Principio De Huygens
 

Último

Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)
Cátedra Banco Santander
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Cátedra Banco Santander
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
Cátedra Banco Santander
 
Cultura Organizacional con Responsabilidad Social Empresarial.pdf
Cultura Organizacional con Responsabilidad Social Empresarial.pdfCultura Organizacional con Responsabilidad Social Empresarial.pdf
Cultura Organizacional con Responsabilidad Social Empresarial.pdf
JonathanCovena1
 
El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........
DenisseGonzalez805225
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
Universidad de Deusto - Deustuko Unibertsitatea - University of Deusto
 
Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)
Cátedra Banco Santander
 
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
IGNACIO BALLESTER PARDO
 
diapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literariadiapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literaria
TheeffitaSantosMedin
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
SergioAlfrediMontoya
 
6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc
6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc
6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc
Gina Quezada Sanchez
 
PPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptxPPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptx
https://gramadal.wordpress.com/
 
fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024
Verito51
 
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Juan Luis Cunya Vicente
 
Lecciones 02 Un día en el ministerio de Jesús.docx
Lecciones 02 Un día en el ministerio de Jesús.docxLecciones 02 Un día en el ministerio de Jesús.docx
Lecciones 02 Un día en el ministerio de Jesús.docx
Alejandrino Halire Ccahuana
 
PPT II BLOQUE SG 2024 - semana de gestion.pdf
PPT  II BLOQUE SG 2024 - semana de gestion.pdfPPT  II BLOQUE SG 2024 - semana de gestion.pdf
PPT II BLOQUE SG 2024 - semana de gestion.pdf
ISAACMAMANIFLORES2
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
OscarCruzyCruz
 
Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)
Cátedra Banco Santander
 
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
nelsontobontrujillo
 

Último (20)

Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
 
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
 
Cultura Organizacional con Responsabilidad Social Empresarial.pdf
Cultura Organizacional con Responsabilidad Social Empresarial.pdfCultura Organizacional con Responsabilidad Social Empresarial.pdf
Cultura Organizacional con Responsabilidad Social Empresarial.pdf
 
El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
 
Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)
 
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
 
diapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literariadiapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literaria
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
 
6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc
6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc
6°_GRADO_-_ACTIVIDAD_DEL_08_DE_JULIO.doc
 
PPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptxPPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptx
 
fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024
 
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
 
Lecciones 02 Un día en el ministerio de Jesús.docx
Lecciones 02 Un día en el ministerio de Jesús.docxLecciones 02 Un día en el ministerio de Jesús.docx
Lecciones 02 Un día en el ministerio de Jesús.docx
 
PPT II BLOQUE SG 2024 - semana de gestion.pdf
PPT  II BLOQUE SG 2024 - semana de gestion.pdfPPT  II BLOQUE SG 2024 - semana de gestion.pdf
PPT II BLOQUE SG 2024 - semana de gestion.pdf
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
 
Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)
 
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
 

Ejercicios serie de fourier

  • 1. Universidad De La Amazonia Parcial 3 Matem´ticas De Control Y a Comunicaci´n o Author: Miguel Leonardo ´ Sanchez Fajardo Supervisor: ˜ Prof. Jorge E. Trivino Macias 17 de octubre de 2013
  • 2. 1. Para f (x) = PREGUNTAS   0, si −π ≤ x ≤ 0  x, si 0 ≤ x ≤ π a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie converge a f en (−π, π). b) Pruebe que esta serie se puede integrar t´rmino a t´rmino. e e c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo x f (t) dt en [−π, π] en series trigonom´trica para e −π 2. Sea f (x) = x sen x , para −π ≤ x ≤ π. a) Escriba la serie de Fourier para f en [−π, π]. b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice e e ´ste hecho para obtener el desarrollo de Fourier de: sen x + x cos x e en [−π, π]. ∞ 3. Encuentre la suma de la serie n=1 (−1)n . 4n2 − 1 SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y escoja un valor adecuado de x. OBSERVACION: El documento fu´ elaborado mediante el software e a EX y las gr´ficas fueron realizadas y editadas mediante Geogeobra 4.2. Los ejercicios fueron hechos con las f´rmulas del libro Matem´ticas Avano a zadas para Ingenieria - Peter O’Neil - 5ta Edici´n con el fin de evitar o problemas, mal entendidos (copia del trabajo), discusiones. A LT 1
  • 3. 1. Para f (x) = DESARROLLO   0, si −π ≤ x ≤ 0  x, si 0 ≤ x ≤ π a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie converge a f en [−π, π]. RESPUESTA: ∞ 1 bn sen f (x) = a0 + 2 n=1 1 L 1 = π x2 = 2π π = 2 u = x; an = = = = = L f (x) cos −L + an cos nπx L π f (x) dx a0 = 1 an = L nπx L −π 0 1 0 dx + π −π π x dx 0 π 0 nπx L dx du = dx | dv = cos(nx) dx; v= 0 π 1 nπx 1 0 cos dx + x cos π −π π π 0 π π 1 1 x sen(nx) − sen(nx)dx nπ 0 0 nπ π 1 cos(nx) n2 π 0 1 cos(nπ) − 1 n2 π 1 (−1)n − 1 . 2 π n 2 1 sen(nx) n nπx π dx
  • 4. bn = u = x; 1 L L f (x) sen −L nπx L du = dx | dv = sen(nx) dx; dx. 1 v = − cos(nx) n π 1 0 sen(nx)dx + x sen(nx)dx π 0 −π π π 1 1 x cos(nx) + =− cos(nx) dx nπ 0 nπ 0 π 1 1 π cos(nπ) − 0 + 2 sen(nx) =− nπ n π 0 1 1 = − cos(nπ) + 2 sen(nπ) − 0 n nπ 1 = (−1)n+1 . n 1 bn = π 0 La serie general de fourier para f (x) es: ∞ f (x) = π (−1)n+1 (−1)n − 1 + sen(nx) + cos(nx) 4 n=1 n n2 π Para probar la convergencia de la serie de fourier de f (x) es necesario comprobar que f sea continua a tramos. Para ello, es necesario graficar la funci´n dada y comprobar las hip´tesis del teorema de convergencia o o de serie de fourier. Comprobamos si f (x) es continua a tramos. 3
  • 5. • Comprobamos que tenga un l´ ımite finito de discontinuidades. En este caso, f (x) tiene un punto de discontinuidad que es x0 = 0. • Comprobamos que existan los l´ ımites en los extremos. Entonces + f (−π ) = 0. f (π − ) = π. • Comprobamos que existan los l´ ımites laterales en el punto de discontinuidad. f (0− ) = 0. f (0+ ) = 0. Dado que f (x) cumple las 3 hip´tesis del teorema, podemos decir con o seguridad que f (x) es continua a tramos. Luego f (x) converge a la funci´n Φ que est´ dada por: o a Φ=   0, −π ≤ x ≤ 0.        0, x = 0.    x, 0 < x ≤ π.       π    , x ± π. 2 b) Pruebe que esta serie se puede integrar t´rmino a t´rmino. e e RESPUESTA: La serie se puede integrar t´rtmino a t´rmino porque e e f (x) es una funci´n continua a tramos en [−L, L], con serie de Fourier: o ∞ 1 f (x) = a0 + an cos 2 n=1 nπx L + bn sen nπx L . c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo en x series trigonom´trica para e f (t) dt en [−π, π] −π RESPUESTA: Entonces para cada x con −L ≤ x ≤ L: 4
  • 6. x ∞ x π dt + 4 n=1 f (t) dt = −L −π x π f (t) dt = 4 −L x f (t) dt = −L ∞ x dt + −π π t 4 n=1 ∞ x + −π n=1 x −π (−1)n − 1 cos(nt)dt + n2 π (−1)n − 1 n2 π x cos(nt)dt + −π (−1)n − 1 sen(nt) n3 π x + −π x −π (−1)n+1 sen(nt)dt n (−1)n+1 n x sen(nt)dt −π (−1)n+2 cos(nt) n2 x −π ∞ x π (−1)n+1 + 1 f (t) dt = x+π + sen(nx) + sen(nπ) 4 n3 π −L n=1 + x (−1)n+2 cos(nx) − cos(nπ) n2 ∞ (−1)n+1 + 1 (−1)n+2 π(x + π) + cos(nx) − (−1)n . f (t) dt = sen(nx) + 3π 2 4 n n −L n=1 5
  • 7. 2. Sea f (x) = x sen x , para −π ≤ x ≤ π. a) Escriba la serie de Fourier para f en [−π, π]. RESPUESTA: ∞ f (x) = 1 nπx nπx a0 + bn sen + an cos 2 L L n=1 π 1 a0 = L 1 = π 2 = π u = x; x sen x dx −π π x sen x dx 0 du = dx | dv = sen x dx; 2 π 2 =− π 2 =− π 2 =− π = 2. a0 = − π + x cos x 0 2 π v = − cos x π cos xdx 0 2 (π) cos(π) − (0) cos(0) + sen x π 2 (π) cos(π) + sen(π) − sen(0) π π 0 [−π] 1 L 1 = π 2 = π L an = u = x; f (x) dx −π π f (x) cos −L π nπx L dx x sen(x) cos(nx)dx −π π x sen(x) cos(nx)dx 0 du = dx | dv = sen(x(1 ± n)) dx; 6 v=− 1 cos(x(1 ± n)) n±1
  • 8. 1 π 1 = π π x sen(x(1 + n)) + sen(x(1 − n)) dx an = 0 π x sen(x(1 + n)) dx + 0 1 π π x sen(x(1 − n)) dx 0 π π 1 1 =− x cos(x(1 + n)) + cos(x(1 + n)) dx π(1 + n) 0 π(1 + n) 0 π π 1 1 x cos(x(1 − n)) + cos(x(1 − n)) dx − π(1 − n) 0 π(1 − n) 0 π 1 1 =− (π) cos(π(1 + n)) − (0) cos(0(1 + n)) + sen(x(1 + n)) π(1 + n) π(1 + n)2 0 π 1 1 − (π) cos(π(1 − n)) − (0) cos(0(1 + n)) + sen(x(1 − n)) π(1 + n) π(1 − n)2 0 1 1 =− π cos(π(1 + n)) + sen(π(1 + n)) − sen(0(1 + n)) π(1 + n) π(1 + n)2 1 1 − (π) cos(π(1 − n)) + sen(π(1 − n)) − sen(0(1 − n)) π(1 + n) π(1 − n)2 1 1 (π) cos(π(1 + n)) + =− sen(π(1 + n)) π(1 + n) π(1 + n)2 1 1 (π) cos(π(1 − n)) + sen(π(1 − n)) − π(1 + n) π(1 − n)2 1 1 =− (π)(−1)n cos(π) + (−1)n sen(π) π(1 + n) π(1 + n)2 1 1 − π(−1)n cos(π) + (−1)n sen(π) π(1 + n) π(1 − n)2 (−1)n+1 . = 2 n −1 1 L 1 = π L bn = f (x) sen −L π nπx L dx x sen(x) sen(nx)dx −π Como los l´ ımites son sim´tricos y la funci´n es impar dado que x y sen e o son funciones impares y seg´n las f´rmulas u o impar ∗ impar = par 7
  • 9. Pero como son 3 funciones impares entonces impar ∗ impar ∗ impar = par ∗ impar = impar Las funciones impares son = 0. Por lo tanto: bn = 0 La serie general de fourier para f (x) es: ∞ f (x) = 1 + n=1 (−1)n+1 cos(nx) n2 − 1 b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice ´ste e e e hecho para obtener el desarrollo de Fourier de: sen x + x cos x en [−π, π] RESPUESTA: Comprobamos si f (x) es continua a tramos. Para ello, es necesario comprobar si cumple las 3 hip´tesis del teorema. o • Comprobamos que tenga un l´ ımite finito de discontinuidades. En este caso, f (x) tiene cero puntos de discontinuidad. 8
  • 10. • Comprobamos que existan los l´ ımites en los extremos. f (−π + ) = 0 f (π − ) = 0 • Como f (x) es continua entonces no hay problema en el punto de discontinuidad. Por lo tanto, comprobamos que f (x) es continua a tramos. Adem´s a f (−π) = f (π). Luego el siguiente paso es encontrar la derivada de f (x). f (x) = x cos x + sen x en[−π, π]. Comprobamos si f (x) es continua a tramos. • Comprobamos que tenga un l´ ımite finito de discontinuidades. En este caso, f (x) tiene cero puntos de discontinuidad. • Comprobamos que existan los l´ ımites en los extremos. + f (−π ) = 0 f (π − ) = 0 Comprobamos que f (x) es continua a tramos. Despues, comprobamos la existencia de f (x). Entonces: f (x) = 2 cos x − x sen x en [−π, π]. Entonces f (x) es igual a la serie de fourier para [−π, π]. ∞ f (x) = n=1 nπx nπx nπ −an sen + bn cos L L L ∞ x cos x + sen x = − n n=1 9 (−1)n+1 sen(nx) n2 − 1
  • 11. ∞ 3. Encuentre la suma de la serie n=1 (−1)n 4n2 − 1 SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y escoja un valor adecuado de x. RESPUESTA: ∞ Serie de Cosenos: =⇒ nπx 1 a0 + an cos . 2 L n=1 a0 = 2 π π sen(x)dx 0 π 2 cos(x) π 0 2 = − cos(π) − cos(0) π 2 = − (1 − 1) π =0 =− 10 π 0
  • 12. an = = = = = = = = = 2 L 2 π 1 π 1 π 1 π 1 π 1 π 1 π 1 π L f (x) cos 0 nπx L dx π sen(x) cos(nx)dx 0 π sen(x + nx) + sen(x − nx) dx 0 π sen(x(1 + n)) + sen(x(1 − n)) dx 0 π −1 1 cos(x(1 + n)) − cos(x(1 − n)) 1+n 1−n 0 −1 1 1 cos(π(1 + n)) − cos(0) + cos(π(1 − n)) − cos(0) 1+n π 1−n −1 1 1 (−1)1+n − 1 + (−1)1−n − 1 1+n π 1−n (−1)2+n 1 1 (−1)−n 1 + + + 1+n 1+n π 1−n 1−n 2+n −n (−1) 2 (−1) + 1+n 1 + n2 1 − n Serie de Cosenos: ∞ 1 (−1)2+n 1 2 (−1)−n (0) + + + cos(nx) 2 π 1+n 1 − n2 1−n n=1 ∞ n=1 1 (−1)2+n 2 (−1)−n + + cos(nx) π 1+n 1 − n2 1−n Si x = π, entonces ∞ n=1 ∞ n=1 1 (−1)2+n 2 (−1)−n + + cos(nπ) π 1+n 1 − n2 1−n 1 (−1)2+n 2 (−1)−n + + (−1)n 2 π 1+n 1−n 1−n 11