SlideShare una empresa de Scribd logo
1 de 18
Probabilidades
1. Probabilidades El concepto de probabilidad se encuentra con frecuencia en la comunicación entre las personas. Por ejemplo: 1)   El paciente tiene un 50% de probabilidad de sobrevivir a una operación determinada. 2)   Los alumnos de Cpech tienen un 95% de probabilidades  de  ingresar a la universidad. En los ejemplos, se da la “medida” de la ocurrencia de un evento que es incierto (sobrevivir a la operación, o ingresar a la universidad), y ésta se expresa mediante un número entre 0 y 1, o en porcentaje. 1.1 Definición
Intuitivamente podemos observar que cuanto más probable es que ocurra el evento, su medida de ocurrencia estará más próximo a “1” o al 100%, y cuando menos probable, más se aproximará a “0”.  De aquí se deduce que un hecho o evento que  NO  puede ocurrir tendrá probabilidad  cero  y uno cuya probabilidad es segura tendrá probabilidad  uno . Luego, si  A  representa un evento o suceso, se cumple que: 0    P(A)    1
Es el conjunto formado por todos los resultados posibles de un experimento. Ejemplo: En el lanzamiento de monedas, la cantidad de resultados posibles se determina por el principio multiplicativo:  1  moneda 2  monedas 3  monedas n  monedas 2  posibilidades 2 ·2 = 4  posibilidades 2 ·2·2 = 8  posibilidades 2 ·2·2·2···2= 2 n  posibilidades Si un conjunto “A” tiene “m” elementos y un conjunto “B” tiene “n” elementos, entonces existen m·n elementos. 1.2 Espacio muestral (E)
Corresponde a un subconjunto de un espacio muestral, asociado a un experimento aleatorio.  Ejemplo: Al lanzar 2 monedas, ¿cuál es la probabilidad de que las dos sean caras? El espacio muestral (E) corresponde a: CC – CS – SC – SS  (2 • 2 = 4 elementos) Solución: El suceso o evento pedido es que sean dos caras, entonces: CC (1 elemento) 1.3 Evento o Suceso
2. Probabilidad clásica  Ejemplo1: ¿Cuál es la probabilidad de que al lanzar un dado común salga un número primo? Solución: El espacio muestral E, está dado por: E={1, 2, 3, 4, 5, 6}, por lo tanto posee 6 elementos, es decir,  6 casos posibles. Sea A, el evento o suceso: A: que salga un número primo, entonces se tiene que:  A={2, 3, 5}, por lo tanto posee 3 elementos, es decir, 3 casos favorables. Casos posibles Casos favorables P(A) =
P(A) = Entonces: Casos favorables (números primos):  3   (2, 3, y 5)   Casos posibles:  6   (1, 2, 3, 4, 5 y 6) Por lo tanto: Ejemplo2: Al lanzar 2 monedas, ¿cuál es la probabilidad de que las dos sean caras? Casos posibles:  4   Casos favorables (2 caras):  1   Entonces: P(2 caras) = = 3 6 1 2 1 4
La probabilidad de que un suceso  NO  ocurra, o “probabilidad de un suceso contrario”, se obtiene a través de: 3. Propiedades 3.1  Tipos de sucesos Probabilidad de un suceso contrario (A):   P(A) = 1 - P(A)  A E A
Ejemplo: Solución: P(no llueva) = 1 - P(llueva)   Si La probabilidad de que llueva es  , ¿cuál es la probabilidad de que  NO  llueva? 2 5 P(no llueva)   =  1 -  2 5 3 5 P(no llueva)   =
Si se tiene certeza absoluta de que un evento  A  ocurrirá: P(A) = 1 Ejemplo: La probabilidad de obtener un número natural al lanzar un dado común es 1 (6 de 6). Casos posibles:  6   (1,2,3,4,5,6)  Casos favorables:  6   (1,2,3,4,5,6)   Probabilidad de un suceso seguro:   6 6 P(natural)   = = 1
Ejemplo: La probabilidad de obtener un número mayor que 6 al lanzar un dado común es 0 (0 de 6). P(A) = 0 Casos posibles:  6   (1,2,3,4,5,6)  Casos favorables:  0 P(mayor que 6)   = = 0 Probabilidad de un suceso imposible:   Si se tiene certeza absoluta de que un evento  A   NO  ocurrirá: 0 6
4. Probabilidad total Corresponde a la probabilidad de que ocurra el suceso A ó el suceso B, siendo éstos  mutuamente excluyentes : P(A   B) = P(A) + P(B) Ejemplo: Al lanzar una moneda, ¿cuál es la probabilidad de que salga cara o sello? Solución: = 1 y P(cara) ó P(sello) =  P(cara)  P(sello)  U P(cara) =  1 2 1 P(sello) =  2 =  P(cara)  P(sello)  + 1 2 =  + 1 2
De no ser  mutuamente excluyentes : Ejemplo: Al lanzar un dado, ¿cuál es la probabilidad de que salga un número menor que 5 ó un número par? Solución: Casos posibles  6   (1,2,3,4,5,6)   Casos favorables (menor que 5):  4  (1,2,3,4) Casos favorables (número par):  3  (2,4,6)   P(A   B) = P(A) + P(B) – P(A  B) U 4 6 P (menor que 5) =  3 6 P (número par) =
Como  2  y  4  son menores que 5, y al mismo tiempo son pares, se estarían considerando como casos favorables dos veces.  Por lo tanto: La probabilidad de que salga un número menor que 5 ó un número par, al lanzar un dado se expresa como: = P(< 5)  +  P(par)  –  P(<5 y par) P (< 5)  ó  P(par) = P(<5)  P(par)  –  P(<5  par)  U U =  +   -   4 6 3 6 2 6 5 6 =
En este caso, ambos sucesos ocurren simultáneamente,  A  y   B . 5. Probabilidad compuesta Corresponde a la probabilidad de que ocurra el suceso  A  y el suceso  B , siendo éstos dependientes o independientes. Caso 1:   Cuando  A  y  B  son eventos independientes, se cumple que: U A B P(  ) = P(A)  · P(B) A  B U
Ejemplo: ¿Cuál es la probabilidad de que al lanzar dos veces un dado se obtengan dos números pares? Solución: Casos posibles:  6   (1,2,3,4,5,6)  Casos favorables:  3   (2,4,6)  Entonces: P(dos pares)  = P(par) y P(par)   = P(par)  ·  P(par) = 3 6 · 3 6 =  1 4
Corresponde a la probabilidad de B tomando como espacio muestral a A, es decir, la probabilidad de que ocurra B dado que ha sucedido A.  Solución: B : Sacar 4 A : Número par = { 2,4,6 } Ejemplo1: Al lanzar un dado, ¿cuál es la probabilidad de obtener un 4 sabiendo que ha salido par? Caso 2:   Cuando  A  y  B  son eventos dependientes corresponde a la  Probabilidad Condicionada . U P(A  B) P(A) P (B/A) =  P (B/A) =  1 3
Ejemplo 2: Se tiene una bolsa con 30 pelotitas entre blancas y rojas, de las cuales 12 son blancas, todas de igual peso y tamaño. Si se extraen 2 pelotitas al azar, sin reposición, ¿cuál es la probabilidad de que ambas sean blancas? Solución: Casos posibles:  30   Casos favorables:  12   Entonces: P(dos blancas)  = P(blanca) y P(blanca)   = P(blanca)  ·  P(blanca) Casos posibles:  29   Casos favorables:  11   Primera extracción   Segunda extracción  (Sin reposición) 30 29 = 12 · 11

Más contenido relacionado

La actualidad más candente

Distribución binomial ejercicios
Distribución  binomial ejerciciosDistribución  binomial ejercicios
Distribución binomial ejercicios
Aurora Sanchez Caro
 
Experimentos aleatorios
Experimentos aleatoriosExperimentos aleatorios
Experimentos aleatorios
sontorito0o
 
4 elementos de la probabilidad
4 elementos de la probabilidad4 elementos de la probabilidad
4 elementos de la probabilidad
insucoppt
 
Ejercicios bernoulli binomial
Ejercicios bernoulli binomialEjercicios bernoulli binomial
Ejercicios bernoulli binomial
Carol Ramos
 
Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)
Matemolivares1
 

La actualidad más candente (20)

Examen Termoquímica y Cinética
Examen Termoquímica y CinéticaExamen Termoquímica y Cinética
Examen Termoquímica y Cinética
 
Probabilidad
ProbabilidadProbabilidad
Probabilidad
 
Tarea 4 de probabilidad con respuestas
Tarea 4 de probabilidad con respuestasTarea 4 de probabilidad con respuestas
Tarea 4 de probabilidad con respuestas
 
Distribución binomial ejercicios
Distribución  binomial ejerciciosDistribución  binomial ejercicios
Distribución binomial ejercicios
 
estadistica medias muestrales
estadistica medias muestralesestadistica medias muestrales
estadistica medias muestrales
 
probabilidad y estadística. Ejercicios resueltos
probabilidad y estadística. Ejercicios resueltosprobabilidad y estadística. Ejercicios resueltos
probabilidad y estadística. Ejercicios resueltos
 
Probabilidad condicional1
Probabilidad condicional1Probabilidad condicional1
Probabilidad condicional1
 
Experimentos aleatorios
Experimentos aleatoriosExperimentos aleatorios
Experimentos aleatorios
 
Distribución
Distribución Distribución
Distribución
 
4 elementos de la probabilidad
4 elementos de la probabilidad4 elementos de la probabilidad
4 elementos de la probabilidad
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Ejercicios bernoulli binomial
Ejercicios bernoulli binomialEjercicios bernoulli binomial
Ejercicios bernoulli binomial
 
Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)Contraste hipótesis con solución(sm)
Contraste hipótesis con solución(sm)
 
Ejercicio De Formula Empirica Y Molecular
Ejercicio De Formula Empirica Y MolecularEjercicio De Formula Empirica Y Molecular
Ejercicio De Formula Empirica Y Molecular
 
Pruebas de hipotesis - Introducción
Pruebas de hipotesis - IntroducciónPruebas de hipotesis - Introducción
Pruebas de hipotesis - Introducción
 
Teoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
Teoria de Conjunto y Técnicas de Conteo aplicado a ProbabilidadTeoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
Teoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Lista 1
Lista 1Lista 1
Lista 1
 
S12 probabilidad condicional
S12 probabilidad condicionalS12 probabilidad condicional
S12 probabilidad condicional
 
Tarea 16 de probabilidad y estadistica con respuestas
Tarea 16 de probabilidad y estadistica  con respuestasTarea 16 de probabilidad y estadistica  con respuestas
Tarea 16 de probabilidad y estadistica con respuestas
 

Destacado (13)

Modulo factorización
Modulo factorizaciónModulo factorización
Modulo factorización
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Logaritmos modulos
Logaritmos modulosLogaritmos modulos
Logaritmos modulos
 
Guia de potencias 7 b multiplicacion y divicion
Guia de potencias 7 b multiplicacion y divicionGuia de potencias 7 b multiplicacion y divicion
Guia de potencias 7 b multiplicacion y divicion
 
Guia potencia
Guia potenciaGuia potencia
Guia potencia
 
Evaluación potencias y raices
Evaluación potencias y raicesEvaluación potencias y raices
Evaluación potencias y raices
 
Guia 1 potencia
Guia 1 potenciaGuia 1 potencia
Guia 1 potencia
 
Guía de números imaginarios 2013
Guía de números imaginarios 2013Guía de números imaginarios 2013
Guía de números imaginarios 2013
 
Sesión: Los números complejos
Sesión: Los números complejosSesión: Los números complejos
Sesión: Los números complejos
 
Ejercicios tipo prueba racionales
Ejercicios tipo prueba racionalesEjercicios tipo prueba racionales
Ejercicios tipo prueba racionales
 
El conjunto de los números reales y ejercicios de aplicacion
El conjunto de los números reales y ejercicios de aplicacionEl conjunto de los números reales y ejercicios de aplicacion
El conjunto de los números reales y ejercicios de aplicacion
 

Similar a Probabilidades

Probabilidad 1
Probabilidad 1Probabilidad 1
Probabilidad 1
lemf2005
 
unidad 2 2.5 y 2.6
unidad 2 2.5 y 2.6unidad 2 2.5 y 2.6
unidad 2 2.5 y 2.6
ITCM
 
Probabilidad 090504205544-phpapp02
Probabilidad 090504205544-phpapp02Probabilidad 090504205544-phpapp02
Probabilidad 090504205544-phpapp02
rubhendesiderio
 
Probabilidad 1 (1)
Probabilidad 1 (1)Probabilidad 1 (1)
Probabilidad 1 (1)
CinthiaNat
 

Similar a Probabilidades (20)

Arbol de decisiones
Arbol de decisionesArbol de decisiones
Arbol de decisiones
 
Probabilidad
ProbabilidadProbabilidad
Probabilidad
 
Tipos de probabilidades
Tipos de probabilidadesTipos de probabilidades
Tipos de probabilidades
 
Tipos de probabilidades
Tipos de probabilidadesTipos de probabilidades
Tipos de probabilidades
 
Probabilidad 1
Probabilidad 1Probabilidad 1
Probabilidad 1
 
ACT_04_Tema_06_Resumen.ppt
ACT_04_Tema_06_Resumen.pptACT_04_Tema_06_Resumen.ppt
ACT_04_Tema_06_Resumen.ppt
 
Elementos de la probabilidad y axiomas de probabilidad
 Elementos de la probabilidad y axiomas de probabilidad  Elementos de la probabilidad y axiomas de probabilidad
Elementos de la probabilidad y axiomas de probabilidad
 
Probabilidad Saltos Lissette
Probabilidad Saltos LissetteProbabilidad Saltos Lissette
Probabilidad Saltos Lissette
 
Presentacion probabilidad2017
Presentacion probabilidad2017Presentacion probabilidad2017
Presentacion probabilidad2017
 
Cálculo de probabilidades
Cálculo de probabilidadesCálculo de probabilidades
Cálculo de probabilidades
 
Tarea de representacion para slideshare
Tarea de representacion para slideshareTarea de representacion para slideshare
Tarea de representacion para slideshare
 
unidad 2 2.5 y 2.6
unidad 2 2.5 y 2.6unidad 2 2.5 y 2.6
unidad 2 2.5 y 2.6
 
Leyes de probabilidad
Leyes de probabilidadLeyes de probabilidad
Leyes de probabilidad
 
Probabilidad 090504205544-phpapp02
Probabilidad 090504205544-phpapp02Probabilidad 090504205544-phpapp02
Probabilidad 090504205544-phpapp02
 
Definición de probabiidad
Definición de probabiidadDefinición de probabiidad
Definición de probabiidad
 
Tipos de sucesos
Tipos de sucesosTipos de sucesos
Tipos de sucesos
 
Clase 1
Clase 1Clase 1
Clase 1
 
Concepto de Probabilidad
 Concepto de Probabilidad Concepto de Probabilidad
Concepto de Probabilidad
 
Probabilidad 1 (1)
Probabilidad 1 (1)Probabilidad 1 (1)
Probabilidad 1 (1)
 
Teoría Básica de Probabilidad
Teoría Básica de ProbabilidadTeoría Básica de Probabilidad
Teoría Básica de Probabilidad
 

Más de mpalmahernandez

Más de mpalmahernandez (20)

Vectores edwin
Vectores edwinVectores edwin
Vectores edwin
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Angulos circunferencia
Angulos circunferenciaAngulos circunferencia
Angulos circunferencia
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Gu ia de pitagoras
Gu ia de pitagorasGu ia de pitagoras
Gu ia de pitagoras
 
Guia de poligonos 7º
Guia de poligonos 7ºGuia de poligonos 7º
Guia de poligonos 7º
 
Guia de decimales 7º
Guia de decimales 7ºGuia de decimales 7º
Guia de decimales 7º
 
Guia de angulo 8º
Guia de angulo 8ºGuia de angulo 8º
Guia de angulo 8º
 
Guia de angulo 8º
Guia de angulo 8ºGuia de angulo 8º
Guia de angulo 8º
 
Guia de angulo 8º
Guia de angulo 8ºGuia de angulo 8º
Guia de angulo 8º
 
Guia de angulo 8º
Guia de angulo 8ºGuia de angulo 8º
Guia de angulo 8º
 
Guia de numeros 8º enteros
Guia  de  numeros  8º  enterosGuia  de  numeros  8º  enteros
Guia de numeros 8º enteros
 
Ejercicios fracciones 1º
Ejercicios fracciones 1ºEjercicios fracciones 1º
Ejercicios fracciones 1º
 
Ejercicios fracciones 1º
Ejercicios fracciones 1ºEjercicios fracciones 1º
Ejercicios fracciones 1º
 
Clase de patrones conocidos de números 2
Clase de patrones conocidos de números 2Clase de patrones conocidos de números 2
Clase de patrones conocidos de números 2
 
Clase de patrones conocidos de números 2
Clase de patrones conocidos de números 2Clase de patrones conocidos de números 2
Clase de patrones conocidos de números 2
 
Cuadriláteros i
Cuadriláteros iCuadriláteros i
Cuadriláteros i
 
Raíces 3ro
Raíces 3roRaíces 3ro
Raíces 3ro
 
Potencias 1ro medio
Potencias 1ro medioPotencias 1ro medio
Potencias 1ro medio
 
Angulos en circunferencia 2º medio
Angulos en circunferencia 2º medioAngulos en circunferencia 2º medio
Angulos en circunferencia 2º medio
 

Último

Editorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfEditorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdf
Yanitza28
 
Chat GPT para la educación Latinoamerica
Chat GPT para la educación LatinoamericaChat GPT para la educación Latinoamerica
Chat GPT para la educación Latinoamerica
EdwinGarca59
 
microsoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamtemicrosoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamte
2024020140
 

Último (20)

infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptxinfor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
 
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptx
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptxTipos de Datos de Microsoft Access-JOEL GARCIA.pptx
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptx
 
Editorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfEditorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdf
 
10°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-810°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-8
 
herramientas web para estudiantes interesados en el tema
herramientas web para estudiantes interesados en el temaherramientas web para estudiantes interesados en el tema
herramientas web para estudiantes interesados en el tema
 
presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...
 
Tipos de datos en Microsoft Access de Base de Datos
Tipos de datos en Microsoft Access de Base de DatosTipos de datos en Microsoft Access de Base de Datos
Tipos de datos en Microsoft Access de Base de Datos
 
Introduccion-a-la-electronica-industrial.pptx
Introduccion-a-la-electronica-industrial.pptxIntroduccion-a-la-electronica-industrial.pptx
Introduccion-a-la-electronica-industrial.pptx
 
Ejercicio 1 periodo 2 de Tecnología 2024
Ejercicio 1 periodo 2 de Tecnología 2024Ejercicio 1 periodo 2 de Tecnología 2024
Ejercicio 1 periodo 2 de Tecnología 2024
 
Redes Neuronales profundas convolucionales CNN ́s-1.pdf
Redes Neuronales profundas convolucionales CNN ́s-1.pdfRedes Neuronales profundas convolucionales CNN ́s-1.pdf
Redes Neuronales profundas convolucionales CNN ́s-1.pdf
 
presentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdf
presentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdfpresentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdf
presentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdf
 
Función del analizador léxico.pdf presentacion
Función del analizador léxico.pdf presentacionFunción del analizador léxico.pdf presentacion
Función del analizador léxico.pdf presentacion
 
Editorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdfEditorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdf
 
el uso de las TIC en la vida cotidiana.pptx
el uso de las TIC en la vida cotidiana.pptxel uso de las TIC en la vida cotidiana.pptx
el uso de las TIC en la vida cotidiana.pptx
 
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
 
Chat GPT para la educación Latinoamerica
Chat GPT para la educación LatinoamericaChat GPT para la educación Latinoamerica
Chat GPT para la educación Latinoamerica
 
microsoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamtemicrosoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamte
 
PRÁCTICA Nº 4: “Análisis de secuencias del ADN con el software BioEdit y uso ...
PRÁCTICA Nº 4: “Análisis de secuencias del ADN con el software BioEdit y uso ...PRÁCTICA Nº 4: “Análisis de secuencias del ADN con el software BioEdit y uso ...
PRÁCTICA Nº 4: “Análisis de secuencias del ADN con el software BioEdit y uso ...
 
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptxTarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
 
BUSCADORES DE INTERNET (Universidad de Sonora).
BUSCADORES DE INTERNET (Universidad de Sonora).BUSCADORES DE INTERNET (Universidad de Sonora).
BUSCADORES DE INTERNET (Universidad de Sonora).
 

Probabilidades

  • 2. 1. Probabilidades El concepto de probabilidad se encuentra con frecuencia en la comunicación entre las personas. Por ejemplo: 1) El paciente tiene un 50% de probabilidad de sobrevivir a una operación determinada. 2) Los alumnos de Cpech tienen un 95% de probabilidades de ingresar a la universidad. En los ejemplos, se da la “medida” de la ocurrencia de un evento que es incierto (sobrevivir a la operación, o ingresar a la universidad), y ésta se expresa mediante un número entre 0 y 1, o en porcentaje. 1.1 Definición
  • 3. Intuitivamente podemos observar que cuanto más probable es que ocurra el evento, su medida de ocurrencia estará más próximo a “1” o al 100%, y cuando menos probable, más se aproximará a “0”. De aquí se deduce que un hecho o evento que NO puede ocurrir tendrá probabilidad cero y uno cuya probabilidad es segura tendrá probabilidad uno . Luego, si A representa un evento o suceso, se cumple que: 0  P(A)  1
  • 4. Es el conjunto formado por todos los resultados posibles de un experimento. Ejemplo: En el lanzamiento de monedas, la cantidad de resultados posibles se determina por el principio multiplicativo: 1 moneda 2 monedas 3 monedas n monedas 2 posibilidades 2 ·2 = 4 posibilidades 2 ·2·2 = 8 posibilidades 2 ·2·2·2···2= 2 n posibilidades Si un conjunto “A” tiene “m” elementos y un conjunto “B” tiene “n” elementos, entonces existen m·n elementos. 1.2 Espacio muestral (E)
  • 5. Corresponde a un subconjunto de un espacio muestral, asociado a un experimento aleatorio. Ejemplo: Al lanzar 2 monedas, ¿cuál es la probabilidad de que las dos sean caras? El espacio muestral (E) corresponde a: CC – CS – SC – SS (2 • 2 = 4 elementos) Solución: El suceso o evento pedido es que sean dos caras, entonces: CC (1 elemento) 1.3 Evento o Suceso
  • 6. 2. Probabilidad clásica Ejemplo1: ¿Cuál es la probabilidad de que al lanzar un dado común salga un número primo? Solución: El espacio muestral E, está dado por: E={1, 2, 3, 4, 5, 6}, por lo tanto posee 6 elementos, es decir, 6 casos posibles. Sea A, el evento o suceso: A: que salga un número primo, entonces se tiene que: A={2, 3, 5}, por lo tanto posee 3 elementos, es decir, 3 casos favorables. Casos posibles Casos favorables P(A) =
  • 7. P(A) = Entonces: Casos favorables (números primos): 3 (2, 3, y 5) Casos posibles: 6 (1, 2, 3, 4, 5 y 6) Por lo tanto: Ejemplo2: Al lanzar 2 monedas, ¿cuál es la probabilidad de que las dos sean caras? Casos posibles: 4 Casos favorables (2 caras): 1 Entonces: P(2 caras) = = 3 6 1 2 1 4
  • 8. La probabilidad de que un suceso NO ocurra, o “probabilidad de un suceso contrario”, se obtiene a través de: 3. Propiedades 3.1 Tipos de sucesos Probabilidad de un suceso contrario (A): P(A) = 1 - P(A) A E A
  • 9. Ejemplo: Solución: P(no llueva) = 1 - P(llueva) Si La probabilidad de que llueva es , ¿cuál es la probabilidad de que NO llueva? 2 5 P(no llueva) = 1 - 2 5 3 5 P(no llueva) =
  • 10. Si se tiene certeza absoluta de que un evento A ocurrirá: P(A) = 1 Ejemplo: La probabilidad de obtener un número natural al lanzar un dado común es 1 (6 de 6). Casos posibles: 6 (1,2,3,4,5,6) Casos favorables: 6 (1,2,3,4,5,6) Probabilidad de un suceso seguro: 6 6 P(natural) = = 1
  • 11. Ejemplo: La probabilidad de obtener un número mayor que 6 al lanzar un dado común es 0 (0 de 6). P(A) = 0 Casos posibles: 6 (1,2,3,4,5,6) Casos favorables: 0 P(mayor que 6) = = 0 Probabilidad de un suceso imposible: Si se tiene certeza absoluta de que un evento A NO ocurrirá: 0 6
  • 12. 4. Probabilidad total Corresponde a la probabilidad de que ocurra el suceso A ó el suceso B, siendo éstos mutuamente excluyentes : P(A  B) = P(A) + P(B) Ejemplo: Al lanzar una moneda, ¿cuál es la probabilidad de que salga cara o sello? Solución: = 1 y P(cara) ó P(sello) = P(cara) P(sello) U P(cara) = 1 2 1 P(sello) = 2 = P(cara) P(sello) + 1 2 = + 1 2
  • 13. De no ser mutuamente excluyentes : Ejemplo: Al lanzar un dado, ¿cuál es la probabilidad de que salga un número menor que 5 ó un número par? Solución: Casos posibles 6 (1,2,3,4,5,6) Casos favorables (menor que 5): 4 (1,2,3,4) Casos favorables (número par): 3 (2,4,6)   P(A  B) = P(A) + P(B) – P(A B) U 4 6 P (menor que 5) = 3 6 P (número par) =
  • 14. Como 2 y 4 son menores que 5, y al mismo tiempo son pares, se estarían considerando como casos favorables dos veces. Por lo tanto: La probabilidad de que salga un número menor que 5 ó un número par, al lanzar un dado se expresa como: = P(< 5) + P(par) – P(<5 y par) P (< 5) ó P(par) = P(<5) P(par) – P(<5 par) U U = + - 4 6 3 6 2 6 5 6 =
  • 15. En este caso, ambos sucesos ocurren simultáneamente, A y B . 5. Probabilidad compuesta Corresponde a la probabilidad de que ocurra el suceso A y el suceso B , siendo éstos dependientes o independientes. Caso 1: Cuando A y B son eventos independientes, se cumple que: U A B P( ) = P(A) · P(B) A B U
  • 16. Ejemplo: ¿Cuál es la probabilidad de que al lanzar dos veces un dado se obtengan dos números pares? Solución: Casos posibles: 6 (1,2,3,4,5,6) Casos favorables: 3 (2,4,6) Entonces: P(dos pares) = P(par) y P(par) = P(par) · P(par) = 3 6 · 3 6 = 1 4
  • 17. Corresponde a la probabilidad de B tomando como espacio muestral a A, es decir, la probabilidad de que ocurra B dado que ha sucedido A. Solución: B : Sacar 4 A : Número par = { 2,4,6 } Ejemplo1: Al lanzar un dado, ¿cuál es la probabilidad de obtener un 4 sabiendo que ha salido par? Caso 2: Cuando A y B son eventos dependientes corresponde a la Probabilidad Condicionada . U P(A B) P(A) P (B/A) = P (B/A) = 1 3
  • 18. Ejemplo 2: Se tiene una bolsa con 30 pelotitas entre blancas y rojas, de las cuales 12 son blancas, todas de igual peso y tamaño. Si se extraen 2 pelotitas al azar, sin reposición, ¿cuál es la probabilidad de que ambas sean blancas? Solución: Casos posibles: 30 Casos favorables: 12 Entonces: P(dos blancas) = P(blanca) y P(blanca) = P(blanca) · P(blanca) Casos posibles: 29 Casos favorables: 11 Primera extracción Segunda extracción (Sin reposición) 30 29 = 12 · 11