SlideShare una empresa de Scribd logo
PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 1
I. Radicales
A. Conceptos
1. Definiciones:
n m
a , donde:
► , es el radical
► a, se conoce como la base
► m, viene a ser el exponente
► n, se le conoce como el índice
► am, viene a ser el radicando
2. Algunas reglas básicas:
a)
n
m
n m
aa  b)
nnn baba  c)
aaaa n nn mnn m
 
d)
n
n
n
b
a
b
a
 e)
nmn m
aa 

f)
nmnm
aaa 
 g)
nm
n
m
a
a
a 

 Al radicando debemos dejarlo expresado en su forma mínima reducida (fmr).
 Cuadrados o cubos perfectos son aquéllos que sus raíces son los enteros.
 Siempre que sea posible, vamos a descomponer al radicando en bases que, al menos, una de ellas
su exponente sea igual al índice.
► Para lograr esto, podemos utilizar la factorización prima (método
del árbol) en los coeficientes numéricos.
► De otra forma, puede factorizar al radicando en factores que uno de ellos sea un
cuadrado o cubo perfecto. O que el factor tenga potencia igual al índice del radical.
► Cuando tengamos variables, vamos a descomponerlas en factores, los cuales
uno de sus exponentes va a ser el múltiplo mayor del índice, pero menor al
exponente con el que se está trabajando.
 Para que la raíz cuadrada o índices pares sean real, el radicando NO PUEDE SER NEGATIVO;
mientras que en la cúbica o índices impares SÍ PUEDE SER.
B. Completa la siguiente tabla.
a a2
a3 2
a 3 3
a
1 12
= 1 13
= 12
· 1= 1 2
1 = 11 2
2
 111 3
3
3 3

2 22
= 2·2 = 4 23
= 22
·2 = 4·2 = 8 2224 2
2
2
 2228 3
3
3 33

3 32
= 3·3 = 9 33
= 32
·3 = 3·3·3 = 27 3339 2
2
2
 33327 3
3
3 33

4
5
PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 2
6
7
8
9
10
C. Simplifica los radicales, dejándolos expresado en la forma de radical. No uses calculadora.
1] _________4 
2 2
22
2] _________9 
3 3
32
5] -2 _________________45 15
w
3] _________12 
2 6
2 3
3 1
22
· 3
6] 5 _________________543 7
x
4] _____________18 5
x
2 9
3 3
3 3 Múltiplos del 2: 2, 4, 6, …
5 – 4 = 1
32
· 2 x5
= x4
· x1
7] - _______________322 3 1011
 wy
Veamos lo que podemos hacer con el
exponente de la variable:
1- Se buscan los múltiplos del
índice.
2- Luego, se procede a escoger el
más grande, cercano al
exponente que estamos
trabajando, pero que sea
menor.
3- Se resta el nuevo exponente
del exponente original.
Podemos descomponer al radicando 12
en factores que uno de ellos sea un
cuadrado perfecto.
Veamos los factores de 12:
1, 12; 2, 6; 3, 4
Podemos expresar a
4312 
PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 3
II. Operaciones con radicales
A. Suma y la resta de expresiones con radicales
1. Condiciones:
► El radicando y el índice tienen que ser iguales para poder llevar a cabo las operaciones.
► El radicando debe estar en su forma mínima reducida.
► Se siguen usando las reglas de los signos algebraicos que conoces.
B. Lleva a cabo la operación que se indica. Deja expresado el resultado en la forma de radical. No uses
calculadora. Investiga si se encuentra algún error solapado.
1] 252)32(2322  6] 2 yx3
+ yx3
= ______
2] 575)103(51053 
3] ______18382 
213
2924
2)3(32)2(2
293242




7] ______32372183284 
4] __________276755 
3963255 
3363255 
3183251 
3071
8] _______512244 3 43 7
 xx
8] ________________243 28
 y 9] __________________1327 5919
wyx
PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 4
5] ________1621282 3 543 147
 wywy 9] ______83325 53
 xx
C. Multiplicación de expresiones con radicales
► Para simplificar, deben tener el mismo índice.
► Se coteja si al multiplicar los radicando el producto es un cuadrado o cubo perfecto.
► De lo contrario, se recomienda simplificar al radical antes de multiplicar.
1] 2422  5] 2 3 x 73 = ______
2] 66)2(3233223 
3] _____18382 
72
436
23226
292432




6] ______18324 
4] __________326755 
21632530 
234530 
6600
7] _______542*34 3

8] ________16244 33
 9] ______23325 33

Podemos multiplicar a los
radicando y si el producto es
cuadrado perfecto, se
simplifica. Veamos,
72
126
1446
18382




PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 5
D. División de expresiones con radicales
► En el denominador no puede permanecer un radical.
► Para simplificar a la expresión, se procede a racionalizar al denominador. Para ello se multiplica por el
mismo radical o por uno que convierta al denominador en un cuadrado o cubo perfecto (respecto al
índice dado).
1] _____
3
2

3
6
3
3
*
3
2


4] 2 3 x 73 = ______
2] ______
72
53


14
353
7*2
353
7
7
*
72
53





3] _____
23
2412
3
3

3
33
33
33
3 2
3 2
3
3
124
4322
4382
2*3
42412
2
2
*
23
2412





5] ______
183
24
Podemos encontrar el nuevo
exponente del radicando,
restando el índice menos el
exponente del radicando
anterior. Veamos,
223 213

PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 6
2
6] __________
186
24

9
2
)18(6
)6(4
)18(6
364
18
18
*
186
24


7] _______
542
34
3
3

8] ________
4020
124


9] ______
53
325

I. Fracciones complejas
A. Simplificar fracciones complejas
Se considera que una expresión que presenta una fracción en el numerador, denominador o ambos es
una fracción compleja.
Veamos la siguiente fracción compleja:
cb
da
c
d
b
a
d
c
b
a
d
c
b
a





B. Simplifica las siguientes fracciones complejas. Identifica lo que representan a, b, c, d. Demuestra todo el
proceso.
1]
3
2
32
41
4
3
2
1




bc
ad
a = 1, b = 2, c = 3, d = 4
6] _______
12
6
24
8

7] ________
7
3
2
3
2
1



EXTREMOS MEDIOS Podemos observar que, finalmente, ad
(extremos) es el nuevo numerador y bc
(medios), el nuevo denominador.
PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS
Prof. Carlos Martínez 7
2] ________
4
3
12

3] _______
2
4
17

4] _______
5
6
3
10
 8] ______
5
2
4
2
7
3



5] _______
5
7
8
6


Más contenido relacionado

La actualidad más candente

Lenguaje algebraico
Lenguaje algebraico Lenguaje algebraico
Lenguaje algebraico
CarmenLiceo
 
100 problemas maravillosos de matemáticas - Libro 6
100 problemas maravillosos de matemáticas - Libro 6100 problemas maravillosos de matemáticas - Libro 6
100 problemas maravillosos de matemáticas - Libro 6
José Mari Melgarejo Lanero
 
Tema Radicales - Propiedades y Ejercicios
Tema Radicales - Propiedades y EjerciciosTema Radicales - Propiedades y Ejercicios
Tema Radicales - Propiedades y Ejercicios
Juan Sanmartin
 
Factorizacion de polinomios
Factorizacion de polinomiosFactorizacion de polinomios
Factorizacion de polinomios
Haddy Martinez Medina
 
Fracciones 4 potenciacion y radicacion
Fracciones 4 potenciacion y radicacionFracciones 4 potenciacion y radicacion
Fracciones 4 potenciacion y radicacion
Cecilia Laura Torres Pariona
 
Ejercicios 5 primaria
Ejercicios 5 primariaEjercicios 5 primaria
Ejercicios 5 primaria
Centro D'Estudios Paloma Mariscal
 
prueba comun multiplo sexto basico
prueba comun multiplo sexto basico prueba comun multiplo sexto basico
prueba comun multiplo sexto basico
Cata Quintanilla
 
EJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROS
EJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROSEJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROS
EJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROS
Educación
 
Taller Nº 1
Taller Nº 1Taller Nº 1
Taller Nº 1
kvmozita83
 
Análisis de los números decimales en un libro de texto
Análisis de los números  decimales en un libro de textoAnálisis de los números  decimales en un libro de texto
Análisis de los números decimales en un libro de texto
frankyjessica
 
5º primaria lengua refuerzo repaso y ampliación
5º primaria lengua refuerzo repaso y ampliación5º primaria lengua refuerzo repaso y ampliación
5º primaria lengua refuerzo repaso y ampliación
espina35
 
Guía cálculo de ángulo en triángulos y cuadriláteros
Guía cálculo de ángulo en triángulos y cuadriláterosGuía cálculo de ángulo en triángulos y cuadriláteros
Guía cálculo de ángulo en triángulos y cuadriláteros
Alan Valenzuela Tapia
 
Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)
Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)
Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)
Pablo Quintas Barros
 
Ejercicios de Radicación de números enteros
Ejercicios de Radicación de números enterosEjercicios de Radicación de números enteros
Ejercicios de Radicación de números enteros
gutidiego
 
Prueba de selección multiple
Prueba de selección multiplePrueba de selección multiple
Prueba de selección multiple
Daniel Pino Espinoza
 
Actividades fracciones + solucionario
Actividades fracciones + solucionarioActividades fracciones + solucionario
Actividades fracciones + solucionario
Julio López Rodríguez
 
Numeros complejos 4to
Numeros complejos 4toNumeros complejos 4to
Actividades + solucionario múltiplos y divisores
Actividades + solucionario múltiplos y divisoresActividades + solucionario múltiplos y divisores
Actividades + solucionario múltiplos y divisores
Julio López Rodríguez
 
Operaciones con radicales suma y resta
Operaciones con radicales   suma y restaOperaciones con radicales   suma y resta
Operaciones con radicales suma y resta
Prof. Carlos A. Gómez P.
 
Cuaderno de práctica i
Cuaderno de práctica iCuaderno de práctica i
Cuaderno de práctica i
Eduardo Gómez
 

La actualidad más candente (20)

Lenguaje algebraico
Lenguaje algebraico Lenguaje algebraico
Lenguaje algebraico
 
100 problemas maravillosos de matemáticas - Libro 6
100 problemas maravillosos de matemáticas - Libro 6100 problemas maravillosos de matemáticas - Libro 6
100 problemas maravillosos de matemáticas - Libro 6
 
Tema Radicales - Propiedades y Ejercicios
Tema Radicales - Propiedades y EjerciciosTema Radicales - Propiedades y Ejercicios
Tema Radicales - Propiedades y Ejercicios
 
Factorizacion de polinomios
Factorizacion de polinomiosFactorizacion de polinomios
Factorizacion de polinomios
 
Fracciones 4 potenciacion y radicacion
Fracciones 4 potenciacion y radicacionFracciones 4 potenciacion y radicacion
Fracciones 4 potenciacion y radicacion
 
Ejercicios 5 primaria
Ejercicios 5 primariaEjercicios 5 primaria
Ejercicios 5 primaria
 
prueba comun multiplo sexto basico
prueba comun multiplo sexto basico prueba comun multiplo sexto basico
prueba comun multiplo sexto basico
 
EJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROS
EJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROSEJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROS
EJERCICIOS DE OPERACIONES COMBINADAS CON NÚMEROS ENTEROS
 
Taller Nº 1
Taller Nº 1Taller Nº 1
Taller Nº 1
 
Análisis de los números decimales en un libro de texto
Análisis de los números  decimales en un libro de textoAnálisis de los números  decimales en un libro de texto
Análisis de los números decimales en un libro de texto
 
5º primaria lengua refuerzo repaso y ampliación
5º primaria lengua refuerzo repaso y ampliación5º primaria lengua refuerzo repaso y ampliación
5º primaria lengua refuerzo repaso y ampliación
 
Guía cálculo de ángulo en triángulos y cuadriláteros
Guía cálculo de ángulo en triángulos y cuadriláterosGuía cálculo de ángulo en triángulos y cuadriláteros
Guía cálculo de ángulo en triángulos y cuadriláteros
 
Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)
Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)
Recursos Libro Anaya Lomce 5º Primaria 14-15 (09)
 
Ejercicios de Radicación de números enteros
Ejercicios de Radicación de números enterosEjercicios de Radicación de números enteros
Ejercicios de Radicación de números enteros
 
Prueba de selección multiple
Prueba de selección multiplePrueba de selección multiple
Prueba de selección multiple
 
Actividades fracciones + solucionario
Actividades fracciones + solucionarioActividades fracciones + solucionario
Actividades fracciones + solucionario
 
Numeros complejos 4to
Numeros complejos 4toNumeros complejos 4to
Numeros complejos 4to
 
Actividades + solucionario múltiplos y divisores
Actividades + solucionario múltiplos y divisoresActividades + solucionario múltiplos y divisores
Actividades + solucionario múltiplos y divisores
 
Operaciones con radicales suma y resta
Operaciones con radicales   suma y restaOperaciones con radicales   suma y resta
Operaciones con radicales suma y resta
 
Cuaderno de práctica i
Cuaderno de práctica iCuaderno de práctica i
Cuaderno de práctica i
 

Destacado

Gua De Preparacin Prueba De Nivel
Gua De Preparacin Prueba De NivelGua De Preparacin Prueba De Nivel
Gua De Preparacin Prueba De Nivel
Alexis Muñoz
 
Guia 13 fracciones algebraicas
Guia 13 fracciones algebraicasGuia 13 fracciones algebraicas
Guia 13 fracciones algebraicas
Kira Suki
 
EXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALESEXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALES
iesrioaguas
 
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomiosEjercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Belén Vidal Moreno
 
Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)
Christiam3000
 
Productos Notables y Factorización
Productos Notables y FactorizaciónProductos Notables y Factorización
Productos Notables y Factorización
NAYELI29
 

Destacado (6)

Gua De Preparacin Prueba De Nivel
Gua De Preparacin Prueba De NivelGua De Preparacin Prueba De Nivel
Gua De Preparacin Prueba De Nivel
 
Guia 13 fracciones algebraicas
Guia 13 fracciones algebraicasGuia 13 fracciones algebraicas
Guia 13 fracciones algebraicas
 
EXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALESEXPRESIONES FRACCIONARIAS Y RADICALES
EXPRESIONES FRACCIONARIAS Y RADICALES
 
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomiosEjercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
 
Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)
 
Productos Notables y Factorización
Productos Notables y FactorizaciónProductos Notables y Factorización
Productos Notables y Factorización
 

Similar a Simplificación y operaciones con radicales y fracciones complejas

Raices
RaicesRaices
Raices
RaicesRaices
EJERCICIOS DE RADICALES CON RESPUESTAS
EJERCICIOS DE RADICALES CON RESPUESTASEJERCICIOS DE RADICALES CON RESPUESTAS
EJERCICIOS DE RADICALES CON RESPUESTAS
Manuel Andrade
 
09. radicales marloner
09. radicales marloner09. radicales marloner
09. radicales marloner
Marlon Melara
 
Apuntes radicales
Apuntes radicalesApuntes radicales
Apuntes radicales
profesor gonzalo
 
Radicales 01 blog
Radicales 01 blogRadicales 01 blog
Radicales 01 blog
Marta Martín
 
Determinantes teoria y ejercicios
Determinantes teoria y ejerciciosDeterminantes teoria y ejercicios
Determinantes teoria y ejercicios
Ing Julio Romero Romero
 
Examen bimestral segundo solucion tipeada
Examen bimestral   segundo solucion tipeadaExamen bimestral   segundo solucion tipeada
Examen bimestral segundo solucion tipeada
EMPRESA DE SERVICIOS EDUCATIVOS "PROYECTO"S.A.C
 
Ud1.Números
Ud1.NúmerosUd1.Números
Solucionario tema 2(1)
Solucionario tema 2(1)Solucionario tema 2(1)
Solucionario tema 2(1)
teregoncat
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
Jorge Ruiz
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
Jennifer Ruiz Valencia
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
Jennifer Ruiz Valencia
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
Jennifer Ruiz Valencia
 
Rosa Cano Sistemas de unidades
Rosa Cano Sistemas de unidadesRosa Cano Sistemas de unidades
Rosa Cano Sistemas de unidades
Rosa Alexandra Cano Bravo
 
Teoria y problemas de ecuaciones cuadraticas ccesa007
Teoria y problemas de ecuaciones cuadraticas ccesa007Teoria y problemas de ecuaciones cuadraticas ccesa007
Teoria y problemas de ecuaciones cuadraticas ccesa007
Demetrio Ccesa Rayme
 
Matemática para Ingeniería - Determinantes
Matemática para Ingeniería - DeterminantesMatemática para Ingeniería - Determinantes
Matemática para Ingeniería - Determinantes
100000281929144
 
Actividades para el ALUMNO MATEMATICAS.pdf
Actividades para el ALUMNO MATEMATICAS.pdfActividades para el ALUMNO MATEMATICAS.pdf
Actividades para el ALUMNO MATEMATICAS.pdf
ssuser821420
 
Guía radicales operaciones básicas combinados no.7
Guía radicales operaciones básicas combinados no.7Guía radicales operaciones básicas combinados no.7
Guía radicales operaciones básicas combinados no.7
norkamendezcelis
 
Fracciones algebraicas prope
Fracciones algebraicas propeFracciones algebraicas prope
Fracciones algebraicas prope
José De Jesús Barrón
 

Similar a Simplificación y operaciones con radicales y fracciones complejas (20)

Raices
RaicesRaices
Raices
 
Raices
RaicesRaices
Raices
 
EJERCICIOS DE RADICALES CON RESPUESTAS
EJERCICIOS DE RADICALES CON RESPUESTASEJERCICIOS DE RADICALES CON RESPUESTAS
EJERCICIOS DE RADICALES CON RESPUESTAS
 
09. radicales marloner
09. radicales marloner09. radicales marloner
09. radicales marloner
 
Apuntes radicales
Apuntes radicalesApuntes radicales
Apuntes radicales
 
Radicales 01 blog
Radicales 01 blogRadicales 01 blog
Radicales 01 blog
 
Determinantes teoria y ejercicios
Determinantes teoria y ejerciciosDeterminantes teoria y ejercicios
Determinantes teoria y ejercicios
 
Examen bimestral segundo solucion tipeada
Examen bimestral   segundo solucion tipeadaExamen bimestral   segundo solucion tipeada
Examen bimestral segundo solucion tipeada
 
Ud1.Números
Ud1.NúmerosUd1.Números
Ud1.Números
 
Solucionario tema 2(1)
Solucionario tema 2(1)Solucionario tema 2(1)
Solucionario tema 2(1)
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
 
Fracciones algebraicas
Fracciones algebraicasFracciones algebraicas
Fracciones algebraicas
 
Rosa Cano Sistemas de unidades
Rosa Cano Sistemas de unidadesRosa Cano Sistemas de unidades
Rosa Cano Sistemas de unidades
 
Teoria y problemas de ecuaciones cuadraticas ccesa007
Teoria y problemas de ecuaciones cuadraticas ccesa007Teoria y problemas de ecuaciones cuadraticas ccesa007
Teoria y problemas de ecuaciones cuadraticas ccesa007
 
Matemática para Ingeniería - Determinantes
Matemática para Ingeniería - DeterminantesMatemática para Ingeniería - Determinantes
Matemática para Ingeniería - Determinantes
 
Actividades para el ALUMNO MATEMATICAS.pdf
Actividades para el ALUMNO MATEMATICAS.pdfActividades para el ALUMNO MATEMATICAS.pdf
Actividades para el ALUMNO MATEMATICAS.pdf
 
Guía radicales operaciones básicas combinados no.7
Guía radicales operaciones básicas combinados no.7Guía radicales operaciones básicas combinados no.7
Guía radicales operaciones básicas combinados no.7
 
Fracciones algebraicas prope
Fracciones algebraicas propeFracciones algebraicas prope
Fracciones algebraicas prope
 

Más de Prof. Carlos Martínez

Uso del internet para aprender
Uso del internet para aprenderUso del internet para aprender
Uso del internet para aprender
Prof. Carlos Martínez
 
Factorizacion de trinomios de segundo grado
Factorizacion de  trinomios de segundo gradoFactorizacion de  trinomios de segundo grado
Factorizacion de trinomios de segundo grado
Prof. Carlos Martínez
 
Valor posicional decimales
Valor posicional   decimalesValor posicional   decimales
Valor posicional decimales
Prof. Carlos Martínez
 
Valor posicional
Valor posicionalValor posicional
Valor posicional
Prof. Carlos Martínez
 
REGLAS DE DIVISIBILIDAD
REGLAS DE DIVISIBILIDADREGLAS DE DIVISIBILIDAD
REGLAS DE DIVISIBILIDAD
Prof. Carlos Martínez
 
Tarea Virtual Logarítmica
Tarea Virtual LogarítmicaTarea Virtual Logarítmica
Tarea Virtual Logarítmica
Prof. Carlos Martínez
 
Tarea Virtual Especial
Tarea Virtual EspecialTarea Virtual Especial
Tarea Virtual Especial
Prof. Carlos Martínez
 
Tarea #2
Tarea #2Tarea #2
Módulo de la Ley del Seno
Módulo de la  Ley del SenoMódulo de la  Ley del Seno
Módulo de la Ley del Seno
Prof. Carlos Martínez
 
Módulo Leyes Del Seno Y Coseno
Módulo   Leyes Del Seno Y CosenoMódulo   Leyes Del Seno Y Coseno
Módulo Leyes Del Seno Y Coseno
Prof. Carlos Martínez
 
Módulo:Funciones Trigonométircas Básicas
Módulo:Funciones Trigonométircas BásicasMódulo:Funciones Trigonométircas Básicas
Módulo:Funciones Trigonométircas Básicas
Prof. Carlos Martínez
 
Tarea #3
Tarea #3Tarea #3

Más de Prof. Carlos Martínez (12)

Uso del internet para aprender
Uso del internet para aprenderUso del internet para aprender
Uso del internet para aprender
 
Factorizacion de trinomios de segundo grado
Factorizacion de  trinomios de segundo gradoFactorizacion de  trinomios de segundo grado
Factorizacion de trinomios de segundo grado
 
Valor posicional decimales
Valor posicional   decimalesValor posicional   decimales
Valor posicional decimales
 
Valor posicional
Valor posicionalValor posicional
Valor posicional
 
REGLAS DE DIVISIBILIDAD
REGLAS DE DIVISIBILIDADREGLAS DE DIVISIBILIDAD
REGLAS DE DIVISIBILIDAD
 
Tarea Virtual Logarítmica
Tarea Virtual LogarítmicaTarea Virtual Logarítmica
Tarea Virtual Logarítmica
 
Tarea Virtual Especial
Tarea Virtual EspecialTarea Virtual Especial
Tarea Virtual Especial
 
Tarea #2
Tarea #2Tarea #2
Tarea #2
 
Módulo de la Ley del Seno
Módulo de la  Ley del SenoMódulo de la  Ley del Seno
Módulo de la Ley del Seno
 
Módulo Leyes Del Seno Y Coseno
Módulo   Leyes Del Seno Y CosenoMódulo   Leyes Del Seno Y Coseno
Módulo Leyes Del Seno Y Coseno
 
Módulo:Funciones Trigonométircas Básicas
Módulo:Funciones Trigonométircas BásicasMódulo:Funciones Trigonométircas Básicas
Módulo:Funciones Trigonométircas Básicas
 
Tarea #3
Tarea #3Tarea #3
Tarea #3
 

Simplificación y operaciones con radicales y fracciones complejas

  • 1. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 1 I. Radicales A. Conceptos 1. Definiciones: n m a , donde: ► , es el radical ► a, se conoce como la base ► m, viene a ser el exponente ► n, se le conoce como el índice ► am, viene a ser el radicando 2. Algunas reglas básicas: a) n m n m aa  b) nnn baba  c) aaaa n nn mnn m   d) n n n b a b a  e) nmn m aa   f) nmnm aaa   g) nm n m a a a    Al radicando debemos dejarlo expresado en su forma mínima reducida (fmr).  Cuadrados o cubos perfectos son aquéllos que sus raíces son los enteros.  Siempre que sea posible, vamos a descomponer al radicando en bases que, al menos, una de ellas su exponente sea igual al índice. ► Para lograr esto, podemos utilizar la factorización prima (método del árbol) en los coeficientes numéricos. ► De otra forma, puede factorizar al radicando en factores que uno de ellos sea un cuadrado o cubo perfecto. O que el factor tenga potencia igual al índice del radical. ► Cuando tengamos variables, vamos a descomponerlas en factores, los cuales uno de sus exponentes va a ser el múltiplo mayor del índice, pero menor al exponente con el que se está trabajando.  Para que la raíz cuadrada o índices pares sean real, el radicando NO PUEDE SER NEGATIVO; mientras que en la cúbica o índices impares SÍ PUEDE SER. B. Completa la siguiente tabla. a a2 a3 2 a 3 3 a 1 12 = 1 13 = 12 · 1= 1 2 1 = 11 2 2  111 3 3 3 3  2 22 = 2·2 = 4 23 = 22 ·2 = 4·2 = 8 2224 2 2 2  2228 3 3 3 33  3 32 = 3·3 = 9 33 = 32 ·3 = 3·3·3 = 27 3339 2 2 2  33327 3 3 3 33  4 5
  • 2. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 2 6 7 8 9 10 C. Simplifica los radicales, dejándolos expresado en la forma de radical. No uses calculadora. 1] _________4  2 2 22 2] _________9  3 3 32 5] -2 _________________45 15 w 3] _________12  2 6 2 3 3 1 22 · 3 6] 5 _________________543 7 x 4] _____________18 5 x 2 9 3 3 3 3 Múltiplos del 2: 2, 4, 6, … 5 – 4 = 1 32 · 2 x5 = x4 · x1 7] - _______________322 3 1011  wy Veamos lo que podemos hacer con el exponente de la variable: 1- Se buscan los múltiplos del índice. 2- Luego, se procede a escoger el más grande, cercano al exponente que estamos trabajando, pero que sea menor. 3- Se resta el nuevo exponente del exponente original. Podemos descomponer al radicando 12 en factores que uno de ellos sea un cuadrado perfecto. Veamos los factores de 12: 1, 12; 2, 6; 3, 4 Podemos expresar a 4312 
  • 3. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 3 II. Operaciones con radicales A. Suma y la resta de expresiones con radicales 1. Condiciones: ► El radicando y el índice tienen que ser iguales para poder llevar a cabo las operaciones. ► El radicando debe estar en su forma mínima reducida. ► Se siguen usando las reglas de los signos algebraicos que conoces. B. Lleva a cabo la operación que se indica. Deja expresado el resultado en la forma de radical. No uses calculadora. Investiga si se encuentra algún error solapado. 1] 252)32(2322  6] 2 yx3 + yx3 = ______ 2] 575)103(51053  3] ______18382  213 2924 2)3(32)2(2 293242     7] ______32372183284  4] __________276755  3963255  3363255  3183251  3071 8] _______512244 3 43 7  xx 8] ________________243 28  y 9] __________________1327 5919 wyx
  • 4. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 4 5] ________1621282 3 543 147  wywy 9] ______83325 53  xx C. Multiplicación de expresiones con radicales ► Para simplificar, deben tener el mismo índice. ► Se coteja si al multiplicar los radicando el producto es un cuadrado o cubo perfecto. ► De lo contrario, se recomienda simplificar al radical antes de multiplicar. 1] 2422  5] 2 3 x 73 = ______ 2] 66)2(3233223  3] _____18382  72 436 23226 292432     6] ______18324  4] __________326755  21632530  234530  6600 7] _______542*34 3  8] ________16244 33  9] ______23325 33  Podemos multiplicar a los radicando y si el producto es cuadrado perfecto, se simplifica. Veamos, 72 126 1446 18382    
  • 5. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 5 D. División de expresiones con radicales ► En el denominador no puede permanecer un radical. ► Para simplificar a la expresión, se procede a racionalizar al denominador. Para ello se multiplica por el mismo radical o por uno que convierta al denominador en un cuadrado o cubo perfecto (respecto al índice dado). 1] _____ 3 2  3 6 3 3 * 3 2   4] 2 3 x 73 = ______ 2] ______ 72 53   14 353 7*2 353 7 7 * 72 53      3] _____ 23 2412 3 3  3 33 33 33 3 2 3 2 3 3 124 4322 4382 2*3 42412 2 2 * 23 2412      5] ______ 183 24 Podemos encontrar el nuevo exponente del radicando, restando el índice menos el exponente del radicando anterior. Veamos, 223 213 
  • 6. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 6 2 6] __________ 186 24  9 2 )18(6 )6(4 )18(6 364 18 18 * 186 24   7] _______ 542 34 3 3  8] ________ 4020 124   9] ______ 53 325  I. Fracciones complejas A. Simplificar fracciones complejas Se considera que una expresión que presenta una fracción en el numerador, denominador o ambos es una fracción compleja. Veamos la siguiente fracción compleja: cb da c d b a d c b a d c b a      B. Simplifica las siguientes fracciones complejas. Identifica lo que representan a, b, c, d. Demuestra todo el proceso. 1] 3 2 32 41 4 3 2 1     bc ad a = 1, b = 2, c = 3, d = 4 6] _______ 12 6 24 8  7] ________ 7 3 2 3 2 1    EXTREMOS MEDIOS Podemos observar que, finalmente, ad (extremos) es el nuevo numerador y bc (medios), el nuevo denominador.
  • 7. PROF. CARLOS MARTÍNEZ | OPERACIONES CON RADICALES Y FRACCIONES COMPLEJAS Prof. Carlos Martínez 7 2] ________ 4 3 12  3] _______ 2 4 17  4] _______ 5 6 3 10  8] ______ 5 2 4 2 7 3    5] _______ 5 7 8 6 