SlideShare una empresa de Scribd logo
Eje 2. Razonamiento lógico matemático 
Página 1 de 37 
Eje 2. Razonamiento lógico matemático 
Universidad Abierta y a Distancia de México 
UnADM 
Curso Propedéutico para el Aprendizaje 
Autogestivo en un Ambiente Virtual
Eje 2. Razonamiento lógico matemático 
Página 2 de 37
Eje 2. Razonamiento lógico matemático 
Página 3 de 37 
Eje 2. Razonamiento lógico matemático 
“[…] Se ha convertido casi en un comentario cliché, que nadie hoy en día alardea de ser un ignorante en literatura, pero es aceptable socialmente alardear de ignorar la ciencia y afirmar orgulloso que se es un incompetente en matemáticas”. 
Richard Dawkins 
Dentro del razonamiento lógico-matemático se pretende medir habilidades para contextualizar las matemáticas en nuevas situaciones, lo cual propicia generar nuevos conocimientos y aplicarlos en trabajos prácticos. Estas habilidades permiten además, procesar, analizar y utilizar gran cantidad de información en las áreas de las matemáticas como la aritmética, el álgebra, la geometría y otros campos del conocimiento. 
El razonamiento matemático está relacionado con la habilidad matemática, lo que permite comprender conceptos y proponer algoritmos para resolver problemas, ya sean éstos contextualizados o abstractos. En este apartado te presentamos problemas de razonamiento lógico-matemático, puesto que el dominio de estas áreas es indispensable para iniciar tus estudios en la Universidad Abierta y a Distancia de México (UnADM). 
En la primera unidad se explican los métodos y técnicas para resolver problemas, partiendo del razonamiento inductivo, complementado con el razonamiento deductivo. Los problemas se presentan de acuerdo al grado de complejidad, pero, si se toman en cuenta los procedimientos presentados, dicha complejidad no será impedimento para resolver los problemas. En la segunda unidad se muestran métodos de Polya para resolver problemas matemáticos, así como diversos ejemplos correspondientes a éstos. 
Otra parte fundamental que revisaremos, es el razonamiento lógico y abstracto, donde se podrán desarrollar mecanismos para la solución de secuencias de figuras. Para comprender mejor estos elementos, es necesario prestar mucha atención a los ejemplos que se presentan a lo largo del curso, ya que éstos ayudarán a resolver aquellas situaciones que se proponen dentro de la actividad.
Eje 2. Razonamiento lógico matemático 
Página 4 de 37 
Competencias 
A través de este eje desarrollarás la siguiente competencia específica: 
Desarrolla la habilidad de resolver problemas mediante los conceptos generales de matemáticas básicas para su representación dentro de la vida cotidiana. 
Propósitos 
Los propósitos de este eje son los siguientes: 
 Utilizar el razonamiento lógico-matemático para crear estructuras de conocimientos. 
 Desarrollar la capacidad de análisis y construcción de esquemas que permitan la solución de un problema. 
 Resolver problemas mediante el uso del razonamiento lógico-matemático. 
Metodología: ¿cómo vas a desarrollar las competencias? 
La forma en que recomendamos cursar este eje es revisar y analizar los ejemplos que proponemos, dado que ellos permitirán resolver los diferentes planteamientos que se presentan en cada una de las unidades que estudiaremos. Además, es indispensable que revisemos los recursos que se sugieren, ya que son una herramienta valiosa para lograr la competencia del curso. 
Este eje, aunque se asemeja al área de matemáticas, será de utilidad para la realización de la actividad integradora, donde nos permitirá razonar, estructurar y tomar decisiones al momento de elección o determinación del giro de tu lectura final. Así que te invitamos a analizar y resolver los diferentes planteamientos que presentamos en este eje.
Eje 2. Razonamiento lógico matemático 
Página 5 de 37 
Planeación para tu aprendizaje 
Para conocer las actividades, recursos y la forma en que será evaluado tu trabajo, revisa la siguiente planeación en la cual te mostramos todos los elementos necesarios para cursar este eje de manera satisfactoria. Unidad 1. Razonamiento inductivo y razonamiento deductivo 1.1. Razonamiento inductivo 1.2. Razonamiento deductivo Logros: 1. Identificar los elementos necesarios para la resolución de problemas 2. Aplicar el razonamiento inductivo y el razonamiento deductivo en la resolución de problemas Competencias digitales: Utilizar medios y entornos digitales para interactuar con otros. Actividad Evaluación Horas Herramienta Recursos Actividad 1. Razonamiento inductivo y razonamiento deductivo 10% 12 horas 9 para lectura de contenidos 3 para la resolución del cuestionario Cuestionario moodle Contenido en plataforma Lectura:  Razonamiento inductivo y deductivo Videos:  Razonamiento inductivo  Razonamiento deductivo 
Unidad 2. El arte de resolver problemas 2.1. Uso de tabla o diagrama 2.2. Trabajar hacia atrás 2.3. Uso de ensayo y error 2.4. Suposición y verificación 2.5. Elaboración de un boceto Logro: 1. Identificar los cuatro pasos de Polya para la resolución de problemas de razonamiento lógico-
Eje 2. Razonamiento lógico matemático 
Página 6 de 37 
matemático.(Compresión) 2. Resolver problemas de lógica matemática por medio de los pasos de Polya. (Análisis) Competencias digitales: Maneja software para la elaboración de organizadores gráficos; utiliza habilidades ofimáticas. Actividad Evaluación Horas Herramienta Recursos Actividad 2. Ingenio lógico- matemático 10% 12 horas 9 para revisión de recursos 3 para solución de la actividad Cuestionario moodle Contenido en plataforma. Lectura:  Método de cuatro pasos de Polya 
Unidad 3. Razonamiento lógico y razonamiento abstracto 3.1. Ejemplos de razonamiento lógico 3.2. Relación de tiempo 3.3. Ordenamiento lineal 3.4. Parentesco Logro: 1. Identificar problemas de orden lógico o abstracto por medio de sus características. (Compresión) 2. Resolver problemas de lógica matemática utilizando los diferentes métodos aprendidos en las unidades anteriores. (Análisis) Competencias digitales: Publicar en un blog; postear en los blog de sus compañeros(as). Actividad Evaluación Horas Herramienta Recursos Actividad 3. Razonamiento abstracto 10% 13 Horas 10 para el estudio de los recursos 3 para la solución de la actividad Cuestionario moodle Contenido en plataforma. Lecturas:  Ordenamiento y clasificación jerárquica  Razonamiento lógico y abstracto Videos:  Razonamiento lógico  Razonamiento abstracto
Eje 2. Razonamiento lógico matemático 
Página 7 de 37
Eje 2. Razonamiento lógico matemático 
Página 8 de 37 
Mapa general del eje 
Desarrolla la habilidad de resolver problemas mediante los conceptos generales de matemáticas básicas para su representación dentro dela vida cotidianaUnidad 1. Razonamiento inductivo y deductivoUnidad 2. El arte de resolver problemasUnidad 3. Razonamiento lógico y abstractoActividad 1. Inducción y deducciónActividad 2. Ingenio lógico matemáticoActividad 3. Razonamiento abstractoEje 2. Razonamiento lógico matemático
Eje 2. Razonamiento lógico matemático 
Página 9 de 37 
Unidad 1. Razonamiento inductivo y deductivo 
En la vida cotidiana utilizamos el razonamiento para tomar decisiones en alguna situación. Dicho razonamiento nos permite estructurar diferentes enunciados que, a su vez, permiten determinar un curso de acción, sea correcto o incorrecto. 
Lo mismo sucede en la escuela, constantemente debemos tomar decisiones dentro del ámbito estudiantil, para lo cual utilizamos dos tipos de razonamiento: el inductivo y el deductivo. Pero, te has preguntado… 
Para profundizar sobre los tipos de razonamiento, revisa la siguiente lectura Razonamiento inductivo y deductivo. 
Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron determinar técnicas que después utilizaron constantemente, como recetas de cocina, lo cual se repitió una y otra vez en problemas similares. Al observar que esta técnica funcionaba con ciertos tipos de problemas, concluyeron que este método funcionaba para problemas del mismo tipo. Cuando resolvemos un problema, podemos llamar a la solución conjetura, que es una hipótesis que se fundamenta en observaciones repetidas de un proceso o patrón determinado. A este tipo de procesos, por su parte, se le llama razonamiento inductivo. El razonamiento inductivo se define como obtener una conclusión general, o conjetura, a partir de observaciones repetidas en ejemplos específicos; dicha conclusión puede llegar a ser verdadera o no. Es fácil demostrar que la solución a estos ejemplos es falsa, pues basta con encontrar un ejemplo que así lo compruebe; a ese tipo se le conoce como contraejemplo. Podemos mencionar, además, el siguiente ejemplo para ilustrar mejor el punto. Conjetura.
Eje 2. Razonamiento lógico matemático 
Página 10 de 37 
Todos los números primos son impares: 2, 3, 5, 7, 11, 13, 17, 19, 23... Si observamos el conjunto de números, todos son números primos, mas no todos son impares, por lo que podemos crear un contraejemplo para refutar la conjetura. Contraejemplo El número 2 es un número primo, pero no un número impar. Observa los siguientes ejemplos de razonamiento inductivo: Conjetura 1: Alberto tiene 25 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conjetura 2: Juan tiene 23 años, vive en la ciudad de México y siempre vota por partidos de Izquierda. Conjetura 3: Alberto tiene 22 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conclusión: Los ciudadanos entre 20 y 25 años que viven en la ciudad de México siempre votan por partidos de izquierda. Estas premisas pueden ser refutadas y demostrarse su falsedad, dado que no todas las personas que viven en la ciudad de México votarán por partidos de izquierda. Este tipo de razonamiento inductivo es un método potencialmente fuerte para llegar a una conclusión, mas no existe la certeza de que sea verdadera. Por esta razón, algunos matemáticos no aceptan una verdad como absoluta en tanto que no se demuestre de manera formal por medio del razonamiento deductivo. El razonamiento deductivo inició con los matemáticos griegos, como revelan los trabajos de Pitágoras, Arquímedes y Euclides, entre otros, quienes aplicaron conceptos generales a problemas específicos, lo que dio como resultado un desarrollo lógico y estructurado de las matemáticas. Un razonamiento deductivo se define como la aplicación de principios generales a ejemplos específicos. En los siguientes ejemplos se muestra la diferencia entre un razonamiento inductivo y otro deductivo. Observa los siguientes ejemplos de razonamiento inductivo: Conjetura 1: Alberto tiene 25 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conjetura 2: Juan tiene 23 años, vive en la ciudad de México y siempre vota por partidos de Izquierda. Conjetura 3: Alberto tiene 22 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conclusión: Los ciudadanos entre 20 y 25 años que viven en la ciudad de México siempre votan por partidos de izquierda. Estas premisas pueden ser refutadas y demostrarse su falsedad, dado que no todas las personas que viven en la ciudad de México votarán por partidos de izquierda. Ahora te presentamos un ejemplo de razonamiento deductivo, el cual es el más utilizado en problemas lógico-matemáticos. Sin embargo, no dejamos de lado el razonamiento inductivo, que nos lleva a resolver de manera parcial o total algunos problemas. Conjetura 1: Todos los panecillos tardan una hora en hornearse.
Eje 2. Razonamiento lógico matemático 
Página 11 de 37 
Conjetura 2: Son las 2 de la tarde y Adriana mete los panecillos al horno. Conclusión: Los panecillos estarán listos a las 3:00 pm. Veamos algunos ejemplos de los dos tipos de razonamientos, en los cuales utilizaremos los números naturales o números cardinales. Considera la siguiente secuencia de números: 1, 8, 15, 22, 29. ¿Cuál es el número que sigue en la lista?, ¿cuál es el patrón? Si observamos y analizamos los números, vemos que 1+7= 8, y 8+7=15. ¿Sumamos 15 y 7 para obtener 22?, ¿sumamos 22 y 7 para obtener 29? Sí, efectivamente. Sumamos 7 a todo número precedente, de modo que el número siguiente de la secuencia es 36, puesto que 29+7=36. Considerando el ejemplo anterior, para identificar el siguiente número de la secuencia, utilizamos la observación, y se determina tanto el patrón como el número que sigue en la secuencia. Este es un ejemplo de razonamiento inductivo. Usando el razonamiento inductivo se concluye que 41 era el número siguiente, pero, ¿qué pasa si se presenta otra respuesta, por ejemplo, se relaciona con las fechas de los meses Junio y Julio? Junio D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Julio D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Entonces, la secuencia quedaría de manera diferente: 1, 8, 15, 22, 29, 6, 13, 20, 27 Si analizamos la secuencia, el patrón sigue siendo 7, pero el consecutivo cambia. Aquí se muestra una falla importante del razonamiento inductivo, el cual no nos garantiza que la verdad en un caso específico será verdad en lo general. Por lo tanto, el razonamiento inductivo no garantiza un resultado verdadero, pero ofrece los medios para hacer una conjetura. En matemáticas es común utilizar la expresión exponencial, que no es otra cosa que representar la multiplicación repetida:
Eje 2. Razonamiento lógico matemático 
Página 12 de 37 
Base = 3.3.3 = 27 Exponente En el razonamiento deductivo se usan enunciados generales para aplicarlos en situaciones específicas, por ejemplo el teorema de Pitágoras: “En un triángulo rectángulo, la suma del cuadrado de los catetos, es igual al cuadrado de la hipotenusa.” Cateto opuesto Hipotenusa Cateto adyacente Si los catetos miden 4 y 6 metros, podemos calcular la longitud de la hipotenusa, representada por . ( ) ( ) √ Por lo tanto, la hipotenusa mide10 metros, aplicando la regla general del teorema de Pitágoras. El razonamiento de un problema normalmente requiere de algunas premisas, lo cual puede ser un supuesto, una ley, un teorema, una definición matemática, observación o idea. Después, con el razonamiento inductivo o deductivo, se puede obtener la solución, misma que se vuelve un argumento lógico. Podemos concluir que el razonamiento inductivo se utiliza con frecuencia para predecir la respuesta de ejercicios de cálculo, como se muestra en el siguiente ejemplo. Predice la multiplicación y el producto que sigue en esta lista de operaciones: Primero, debemos identificar que el 21 se repite en todas las operaciones; en tanto que en el segundo factor, el incremento entre 5 y 8 es 3, por lo tanto, la siguiente multiplicación sería: - por lo cual es verdadero.
Eje 2. Razonamiento lógico matemático 
Página 13 de 37 
Cuando utilizamos el razonamiento inductivo, corremos ciertos riesgos asociados al razonamiento. Un ejemplo clásico es el de dividir por regiones una circunferencia, partiendo de puntos. Veamos la siguiente gráfica: Si observamos la figura, en la primera se colocó un punto sobre la superficie, y se denota una región; si en cambio, colocamos dos puntos sobre la circunferencia y los unimos con una línea recta, formamos dos regiones. Si finalmente, colocamos tres puntos sobre la circunferencia y los unimos por medio de líneas rectas, no se crean tres regiones, sino cuatro. Esto se puede representar por medio de una progresión geométrica: ¿Qué pasaría si colocamos cuatro puntos en la circunferencia, o cinco?, ¿cuántas regiones tendríamos? Representando cuatro y cinco puntos en la circunferencia, quedarían de la siguiente manera: Si volvemos a representarlo en la progresión geométrica, quedaría de la siguiente manera: Analicemos ¿Cuál sería el número de regiones si colocamos 6 puntos en la circunferencia?
Eje 2. Razonamiento lógico matemático 
Página 14 de 37 
Si respondemos por medio de una conjetura tomada de un razonamiento inductivo, la progresión quedaría de la siguiente manera: Representándolo gráficamente, sería: ¡Nos han robado! Sólo tenemos 31 regiones. Ahora probemos con siete puntos en la circunferencia. Razonando inductivamente, tendríamos: Representándolo gráficamente, tendríamos: ¡Nos han vuelto a robar! Ahora tenemos 57 regiones, cuando deberíamos tener 64. Conclusión: Este tipo de ejemplos ilustran que en matemáticas no podemos simplemente guiarnos por observaciones; en su lugar, necesitamos argumentos lógicos y rigurosos que constituyen una prueba que demuestra la veracidad del proceso.
Eje 2. Razonamiento lógico matemático 
Página 15 de 37 
Una vez que hayas analizado la lectura recomendada, observa con atención los siguientes videos, en los que encontrarás una explicación clara de los conceptos de inducción y deducción. 
Mansilla, M. (2012). Razonamiento inductivo y deductivo parte 1 y 2. [Archivo de video]. Recuperado de https://www.youtube.com/watch?v=Uh3pyW4mf8c y https://www.youtube.com/watch?v=LM6tl4baz8A 
Después de haber analizado el documento y el video, te invitamos a leer la siguiente reflexión, donde comprobaremos que, algunas veces, actuar de manera inductiva nos lleva a resultados equivocados si no demostramos antes lo que solamente asumimos. 
El científico y las pulgas Un científico tenía dos frascos grandes frente a él sobre la mesa del laboratorio. El frasco de la izquierda contenía 100 pulgas, en tanto que el frasco de la derecha estaba vacío. El científico sacó con cuidado una pulga del frasco de la izquierda, la colocó sobre la mesa en medio de los dos frascos, dio un paso hacia atrás, y con voz fuerte dijo “salta”. La pulga saltó y luego la colocó en el frasco de la derecha. El científico sacó entonces cuidadosamente una segunda pulga del frasco de la izquierda y la colocó sobre la mesa entre los dos frascos. De nuevo dio un paso hacia atrás y, con voz fuerte, dijo “salta”. La pulga saltó y fue colocada en el frasco de la derecha. El científico trató del mismo modo a cada una de las 100 pulgas del frasco de la izquierda y cada pulga saltó como se le ordenó. Aplicó la misma mecánica nuevamente con las pulgas de la derecha, únicamente con un cambio. El científico sacó una pulga del frasco de la derecha, le arrancó las patas traseras, y colocó la pulga sobre la mesa, dio un paso hacia atrás y dijo con voz fuerte “salta”. La pulga no saltó y fue colocada en el frasco de la izquierda. El científico hizo lo mismo con las 100 pulgas y ninguna de ellas saltó cuando se les ordenó, por lo que el científico llegó a la siguiente conclusión: Cuando se arrancan las patas traseras a una pulga, se vuelve sorda.
Eje 2. Razonamiento lógico matemático 
Página 16 de 37 
Actividad 1. Razonamiento inductivo y deductivo Propósito: Verificar el conocimiento obtenido sobre razonamiento deductivo y razonamiento inductivo. Descripción: Con esta actividad podrás evaluar tus habilidades para la resolución de problemas matemáticos aplicando el razonamiento inductivo y deductivo. Indicaciones: 1. Regresa al aula y busca la Actividad 1. Razonamiento inductivo y deductivo, en la lista de tareas. Una vez que la identifiques, da clic para acceder al cuestionario. 2. Responde el cuestionario, y cuando termines, revisa la realimentación. 3. El cuestionario te permitirá solamente dos intentos. Criterios de evaluación: El cuestionario tiene un valor del 10% sobre la evaluación final del curso. Lineamientos de entrega: Deberás responder el cuestionario en su totalidad. Recursos: Cuestionario: Razonamiento inductivo y deductivo Para responder el cuestionario interactivo debes ingresar al aula virtual. 
Cierre de la unidad 
A lo largo de esta unidad revisamos que, antes de resolver un problema, ya sea de ámbito matemático o cualquier situación, debemos estructurarlo para poder identificar los elementos necesarios para resolverlo. El razonamiento inductivo y el razonamiento deductivo nos permiten formar estas estructuras; el primero determina inicialmente un resultado que puede o no tener validez, en tanto que el segundo verifica este resultado, por lo cual ambos resultan útiles. 
Este principio nos ayuda no sólo a resolver cualquier tipo de problemas, sino a desarrollar diferentes habilidades, así como la capacidad de razonar, tomar decisiones y generar nuevas ideas en cualquier ámbito educativo.
Eje 2. Razonamiento lógico matemático 
Página 17 de 37 
Fuentes de consulta 
Castro, L. (s/f). Diez plataformas para crear un blog [About.com]. Recuperado de http://aprenderinternet.about.com/od/ConceptosBasico/tp/Diez-Plataformas-Para-Crear- Un-Blog.htm 
Mansilla, M. (2012). Razonamiento inductivo, deductivo parte 1 y 2 [archivo de video]. Recuperado de https://www.youtube.com/watch?v=Uh3pyW4mf8c y https://www.youtube.com/watch?v=LM6tl4baz8A 
Zevallos, A. (2001, 30 de marzo). Razonamiento Lógico - 17 Problemas Resueltos - (Razonamiento Inductivo y Deductivo, Problemas Recreativos) – Solucionario [El blog del profe Alex]. Recuperado de: http://profe-alexz.blogspot.mx/2011/03/razonamiento-logico- 17-problemas.html
Eje 2. Razonamiento lógico matemático 
Página 18 de 37 
Unidad 2. El arte de resolver problemas 
Ahora en esta unidad te brindamos algunos métodos de solución de problemas, tomados desde la aportación de George Polya, quien fue uno de los autores que propusieron el método de resolución de problemas. Además, te mostramos diferentes ejemplos y técnicas por los cuales podemos resolver problemas. 
Como hemos visto en la primera unidad, el razonamiento inductivo puede ser útil para iniciar la solución de un problema, pero también debemos utilizar el razonamiento deductivo para comprobar si la solución es veraz o falsa. 
Para resolver problemas debemos tener una organización al momento de comprender, analizar, clasificar y determinar el resultado, puesto que si sólo nos guiamos por conjeturas o premisas, podemos caer en errores que no dificulte su solución adecuada. Es por ello que existen procesos o tipos de estrategias para resolver un problema, a continuación te mostramos algunos de éstos. 
Método de cuatro pasos de Polya 
La estrategia más conocida es la de George Polya. Nacido en Hungría en 1887, Polya fue un matemático que desarrolló diversas técnicas para la solución de problemas. Su publicación más famosa fue “How to solve it” (Cómo resolverlo), donde propuso un método de cuatro pasos para la solución de problemas. 
Revisa y reflexiona sobre el método de cuatro pasos que propuso Polya, expuesto en el documento Método de cuatro pasos y relaciónalo con cada uno de los cinco ejemplos que a continuación te mostramos:
Eje 2. Razonamiento lógico matemático 
Página 19 de 37 
Método de cuatro pasos de Polya A continuación te presentamos en qué consiste el método de cuatro pasos de Polya para la solución de problemas: Paso 1 Comprenda el problema. Usted no puede resolver un problema si no entiende qué le pidieron calcular. Se debe leer y analizar el problema cuidadosamente. Tal vez sea necesario leerlo varias veces. Después de eso, pregúntese, ¿qué debo calcular? Paso 2 Elabore un plan: Existen muchas maneras de enfrentar un problema. Elija un plan adecuado para el problema específico que está resolviendo. Paso 3 Aplique un plan: Una vez que sabe cómo enfocar el problema, ponga en práctica ese plan. Tal vez llegue a “un callejón sin salida” y encuentre obstáculos imprevistos, pero debe ser persistente. Paso 4 Revise y verifique: Revise su respuesta para ver que sea razonable. ¿Satisface las condiciones del problema? ¿Se han contestado todas las preguntas que plantea el problema? ¿Es posible resolver el problema de manera diferente y llegar a la misma respuesta? El paso 2 del método para la solución de problemas de Polya aconseja elaborar un plan. Aquí se presentan algunas sugerencias y estrategias que han demostrado ser útiles. Sugerencias para la solución de problemas Elabore una tabla o diagrama Busque un patrón Resuelva un problema similar más sencillo Elabore un bosquejo Use el razonamiento inductivo Formule una ecuación y resuélvala Si una fórmula aplica, úsela Trabaje hacia atrás Suponga y verifique Use ensayo y error Use el sentido común Busque la trampa que se le tiende en el caso de que una respuesta parezca demasiado evidente o imposible Cuando a George Polya se le preguntaba cómo llegó a ser matemático, él contestaba que no era lo suficientemente inteligente para ser físico, y demasiado para ser filósofo, así que eligió matemáticas, que es una cosa intermedia. Ahora que conociste los métodos propuestos por Polya, es momento de revisar algunos ejemplos para que te vayas familiarizando con estos procesos. Recuerda que esto te será útil durante toda la carrera profesional que curses. El desarrollo del plan que nos propone Polya requiere el uso de varios métodos.
Eje 2. Razonamiento lógico matemático 
Página 20 de 37 
Ejemplos de Métodos para resolver problemas 
1. Uso de tabla o diagrama Se tomará un ejemplo del libro “Liber Abaci” del matemático Leonardo Pisano, conocido como Fibonacci. Ejemplo 1. Un hombre colocó un par de conejos en una jaula. Durante el primer mes los conejos no se reprodujeron, pero cada mes a partir de entonces tuvieron una nueva pareja de conejos. Si cada nueva pareja se reprodujera de la misma manera, ¿cuántas parejas de conejos habría al cabo de un año? Solución: Se comenzará con el método que propone George Polya: Paso 1. Comprende el problema: la intención es comprender qué es lo que solicita el problema, y la mejor manera de hacerlo es redactando el problema para entenderlo correctamente. Por ejemplo, ¿cuántas parejas de conejos tendrá el hombre al final del año, si inicia con una pareja de conejos que no procrea durante el primer mes, pero cada mes siguiente cada pareja que tuvieron procrea un nuevo par? Paso 2. Elabora un plan: en el ejemplo se identifica un patrón definido de cómo se reproducen los conejos, así que podrías construir la siguiente tabla: Mes Números de parejas al inicio Número de nuevas parejas procreadas= Números de parejas al final del mes
Eje 2. Razonamiento lógico matemático 
Página 21 de 37 
1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12° La respuesta estará aquí. Paso 3. Aplica el plan: al inicio del primer mes sólo hay una pareja de conejos, y no se reproducen durante este periodo; es decir, 1+0 = 1. Este patrón continúa, pero al segundo mes hay dos parejas; es decir, 1+1 =2. Al tercer mes solamente se reproduce una pareja, porque la segunda no se reproduce durante su primer mes de vida; es decir 2+1=3. Al seguir el patrón, la tabla quedaría de la siguiente manera. Mes Números de parejas al inicio Número de nuevas parejas procreadas= Números de parejas al final del mes 1° 1 0 1 2° 1 1 2 3° 2 1 3 4° 3 2 5 5° 5 3 8 6° 8 5 13 7° 13 8 21 8° 21 13 34 9° 34 21 55 10° 55 34 89 11° 89 55 144 12° 144 89 233 Habrá 233 parejas de conejos al final del año. Paso 4. Revisa y verifica: regresa y asegúrate de que la interpretación del problema fue correcta; verifica si la suma de los números coincide con los resultados. 2. Trabajar hacia atrás
Eje 2. Razonamiento lógico matemático 
Página 22 de 37 
Planteamiento Alberto asiste cada semana al Hipódromo de las Américas para las carreras de caballo con sus amigos. En una semana duplicó su dinero, pero luego perdió $300. Regresó con su dinero la siguiente semana, lo triplicó, y luego perdió $600. La siguiente semana volvió a llevar su dinero y lo intentó nuevamente. En esta ocasión cuadruplicó su dinero, y luego jugó lo suficiente para llevarse a su casa un total de $6,000. ¿Con cuánto inició la primera semana? Solución Como el problema requiere determinar la cantidad de dinero con que inició Alberto, y se conoce la cifra final, se puede aplicar el método de trabajar hacía atrás. La cantidad final es $6,000, y representa cuatro veces la cantidad con la que inició la tercera semana. Se divide $6,000 entre 4, para saber la cantidad que tenía la tercera semana, lo que resulta ser $1,500. Antes de perder $600 la segunda semana, tenía 1500 + 600, o sea, 2,100. Es decir, triplicó su dinero, pues la segunda semana inició con 2,100 dividido entre 3, es decir, 700. Al repetir este proceso en la primera semana, sería: Lo cual representa el doble de la cifra con la que inició, por lo tanto: Respuesta Para verificar si el procedimiento es correcto, se puede representar en ecuaciones: Primera semana, ( ) Segundo semana, ( ) Tercera semana, ( ) 3. Uso de ensayo y error Pedro, Raúl y Ana son amigos, y cada uno es dueño de sólo uno de los siguientes animales: perro, gato y tortuga. Identifica el nombre de la persona propietaria de cada animal con base en los siguientes datos: 1.- El sobrino de Ana tiene un gato 2.- Pedro tiene un perro 3.- Pedro no es el dueño de la tortuga
Eje 2. Razonamiento lógico matemático 
Página 23 de 37 
Solución: Se parte por medio de ensayo y error. Se proponen cada uno de los datos y todas las combinaciones posibles, y se eliminan aquellas que contradicen alguno de los datos hasta obtener asignaciones completas. El anterior sería un ejemplo de combinaciones posibles, aunque se podrían colocar otras, como: 1. Pedro tiene la tortuga Falso 2. Pedro tiene el perro Verdadero 3. Raúl tiene la tortuga Falso 4. Raúl tiene el perro Falso 5. Raúl tiene el gato debe ser cierta por que no contradice ninguna información y es la única opción disponible 6. Ana tiene la tortuga no contradice ninguna información 7. Ana tiene el perro Falso 8. Ana tiene el gato Falso, ya que un animal no puede tener dos dueños 9. Ana tiene el gato Falso 10. Ana tiene la tortuga Verdadero 4. Suposición y verificación Planteamiento A las orillas de un río se vio a la cuarta parte de una manada de borregos. El doble de la raíz cuadrada de esa manada se fue al establo; y 3 por 5 camellos permanecieron a la orilla del rio en espera del pastor. ¿Cuál es el número de camellos en esa manada? Solución Si te das cuenta, en este problema el resultado es un número natural. Como en el planteamiento del problema se menciona “un cuarto de la manada”, y “la raíz cuadrada de esa manada”, el número de borregos debe ser un múltiplo de 4, como un cuadrado perfecto. Se inicia con una ecuación donde representa el número de borregos en la manada, el cual se sustituye por 4, para ver si es la solución. Un cuarto de la manada + El doble de la raíz cuadrada de la manada + 3 veces 5 camellos = Número de camellos en la manada
Eje 2. Razonamiento lógico matemático 
Página 24 de 37 
+ √ + = ( ) + √ + 15 = 4 1 + 4 + 15 = 4 20 4 Si observas el proceso, 4 no es la solución, por lo que se intenta con el siguiente número perfecto, que es múltiplo de 4. ( ) √ Observas que 16 tampoco es la solución al problema, así que se utiliza el siguiente número cuadrado perfecto, y que es múltiplo de 4. ( ) √ Aquí se cumple la igualdad y se encuentra el resultado al problema. La ecuación permite verificar el resultado. 5. Elaboración de un boceto Planteamiento: La copa y el botón
Eje 2. Razonamiento lógico matemático 
Página 25 de 37 
De la siguiente figura, y moviendo solamente dos palillos, deja el botón fuera de la 
copa. No puedes mover el botón. La copa puede quedar en cualquier orientación, pero 
debe mantenerse formada. 
Solución 
Para solucionar este tipo de problemas, debes realizar procesos y dibujarlos. 
Para profundizar un poco más sobre la resolución de problemas, a través de la creatividad 
y el juego, te invitamos a consultar el siguiente vínculo electrónico, donde se muestran 
más ejemplos de razonamiento: 
Tomado de: Lerdo, I.N. (2011). Juegos de todo el mundo: juegos con cerillas y palillos 
[Museo del juego] Recuperado de: http://museodeljuego.org/wp-content/ 
uploads/contenidos_0000001237_docu1.pdf 
Actividad 2. Ingenio lógico matemático 
Propósito
Eje 2. Razonamiento lógico matemático 
Página 26 de 37 
Resolver problemas matemáticos usando las estructuras del razonamiento lógico- matemático. Descripción: Con esta actividad podrás evaluar tus habilidades utilizando algunos métodos revisados durante esta unidad para la resolución de problemas lógico-matemáticos. Indicaciones: 1. Regresa al aula y busca la Actividad 2. Ingenio lógico matemático, en la lista de tareas. Una vez que la identifiques, da clic para acceder al cuestionario. 2. Responde el cuestionario, y cuando termines, revisa la realimentación. 3. El cuestionario te permitirá solamente dos intentos. Criterios de evaluación: El cuestionario tiene un valor del 10% sobre la evaluación final del curso. Lineamientos de entrega: Deberás responder el cuestionario en su totalidad. Recursos: Cuestionario: Ingenio lógico matemático Para responder el cuestionario interactivo debe ingresar al aula virtual 
Constante de Kaprekar 
Como podemos ver, cada uno de los problemas que acabas de resolver tiene particularidades que necesitan diversos métodos de solución. Ahora te invitamos a revisar la siguiente reflexión que aporta un conocimiento muy útil en diferentes momentos de tu vida estudiantil. ¿Alguna vez has escuchado de la constante de Kaprekar? Si no la conoces, realiza la siguiente actividad para identificarla. Selecciona un número de tres dígitos diferentes. Primero, ordénalos de manera descendente, y resta los mismos tres dígitos, pero ahora ordenados de manera ascendente. Por ejemplo, selecciona los dígitos 4, 6 y 9, de modo que, en primera Observa que obtuviste 495. Repitiendo el proceso, vuelves a obtener el número 495. A este número se le conoce como la constante de Kaprekar, en la cual el resultado siempre será 495, si el proceso se aplica a cantidades de tres dígitos. Te invitamos a realizar el mismo proceso de Kaprekar a un número de dos dígitos
Eje 2. Razonamiento lógico matemático 
Página 27 de 37 
Cierre de la unidad 
Hasta ahora nos hemos dado cuenta de que la resolución de problemas no se aplica sólo a las matemáticas, sino que se amplían en otras ramas de la educación universitaria. Además, cuando se presenta un problema, algunas veces lo resolvemos por medio de la intuición y su resultado nos convence, pero existen otros que necesitan más de una predicción inductiva; necesitan estructuras, métodos, técnicas y demás herramientas que permiten llegar a su solución. 
Te exhortamos a revisar la última unidad de este eje, donde fortalecerás todo lo aprendido hasta el momento. 
Fuentes de consulta 
Lerdo, I.N. (2011). Juegos de todo el mundo: juegos con cerillas y palillos [Museo del juego]. Recuperado de http://museodeljuego.org/wp- content/uploads/contenidos_0000001237_docu1.pdf 
Miller, C. D., Heeren, V. E., y Hornsby, J. (2013). Matemática: Razonamiento y aplicaciones. 12ª Edición. México: Editorial Pearson Educación. 
instancia, obtienes 964. 964 954 - 469 - 459 495 495 
diferentes (interpreta 9 como 09, si es necesario) y compara los resultados. ¿Qué parece ser verdad? Realiza lo mismo, pero, en lugar de dos dígitos, utiliza cuatro dígitos ¿Qué conjetura se puede formar respecto a esta situación?
Eje 2. Razonamiento lógico matemático 
Página 28 de 37 
Unidad 3. Razonamiento lógico y abstracto 
Muchos de los ejercicios que hemos revisado en las dos unidades anteriores han sido para orientarte y proporcionarte métodos para la solución de problemas, métodos que te sirven para determinar procesos y técnicas. Los ejemplos tratados en esta unidad nos muestran situaciones relacionadas con el pensamiento creativo y a medida que los vayamos resolviendo, mejorará notablemente tu capacidad de razonamiento. 
Reflexionemos en lo siguiente: 
La forma de resolverlos es ir sacando conclusiones con un criterio lógico, sin hacer uso de conocimientos matemáticos o de lógica. 
Por su parte, el razonamiento abstracto se constituye por series de figuras, y debemos escoger cuál de las figuras es la que continúa; para ello, tenemos que notar ciertas características como el cambio de posición, rotación y analogías de las figuras. 
Para precisar, reforzar y continuar con el aprendizaje dentro de esta unidad, te recomendamos leer la siguiente presentación sobre ordenamiento jerárquico:
Eje 2. Razonamiento lógico matemático 
Página 29 de 37
Eje 2. Razonamiento lógico matemático 
Página 30 de 37
Eje 2. Razonamiento lógico matemático 
Página 31 de 37
Eje 2. Razonamiento lógico matemático 
Página 32 de 37 
Para verificar a través de videos algunos procesos de solución, te sugerimos revisar los ejemplos en el siguiente par de vínculos electrónicos sobre razonamiento lógico y abstracto:
Eje 2. Razonamiento lógico matemático 
Página 33 de 37 
Zevallos, A. (2013). Razonamiento lógico 152 - verdades y mentiras [video]. Recuperado de 
https://www.youtube.com/watch?v=S_1AQM0LozE 
Zevallos, A. (2013). Analogías gráficas problema 201 - razonamiento abstracto [video]. Recuperado de https://www.youtube.com/watch?v=pKQ5t6n8vC4 
Por último, te brindamos un documento donde revisarás diversos ejemplos y ejercicios sobre razonamiento lógico y abstracto, tomado de la siguiente referencia: 
Ayala, O. (s/f). Razonamiento. Recuperado de 
http://repositorio.utn.edu.ec/bitstream/123456789/1176/1/RAZONAMIENTO.pdf 
Después de que hemos tenido un acercamiento al razonamiento lógico y al razonamiento abstracto, te mostramos ciertos ejemplos que pueden ayudarte en la realización de la actividad de aprendizaje: 
1. Razonamiento Lógico 
 Relación de tiempo 
 Ordenamiento lineal 
 Parentesco 
2. Razonamiento abstracto 
Ahora veamos los siguientes ejemplos de cada uno de ellos. 
Relación de tiempo Si el ayer del pasado mañana del mañana de anteayer de mañana es jueves, ¿qué día fue ayer? Para solucionarlo, lo más conveniente es crear una recta numérica para representar los días.
Eje 2. Razonamiento lógico matemático 
Página 34 de 37 
Si el ayer: -1 Del pasado mañana: +2 Del mañana: +1 De anteayer: -2 De mañana: +1 Entonces: Del resultado se deduce que mañana (+1) es jueves, y hoy es miércoles; así que ayer fue martes. Ordenamiento lineal Jorge es mayor que Sandra y ella es menor que Fidel. Marco es mayor que Jorge y Fidel, y éste es menor que Jorge. ¿Cuál de los siguientes enunciados es verdadero? a) Fidel es mayor que Jorge y menor que Sandra b) Jorge es mayor que Sandra y Fidel c) Marco es menor que Jorge y mayor que Fidel Para resolver este problema, puedes relacionarlos de acuerdo a los enunciados: Por lo tanto, El enunciado verdadero es el de la opción b). Parentesco En un restaurante estaban presentes: un padre, una madre, un tío, una tía, un
Eje 2. Razonamiento lógico matemático 
Página 35 de 37 
hermano, una hermana, un sobrino, una sobrina y dos primos. Si cada uno consumió $350, ¿cuánto gastaron en total como mínimo? Solución: Analizando el problema, puedes determinar que cada integrante de la familia puede desempeñar diferentes papeles. Representado en un esquema, quedaría de la siguiente manera. Por consiguiente, estuvieron cuatro personas, así que ( ) Ejemplos de razonamiento abstracto 1.- ¿Cuál es la figura que sigue en la secuencia? Solución: Suprimiendo las puntas de la flechas, la respuesta correcta sería C). 2.- ¿Cuál es la figura que sigue en esta serie?
Eje 2. Razonamiento lógico matemático 
Página 36 de 37 
Solución: Si analizas el movimiento de las figuras, éstas van rotando 90°, por lo tanto, la solución es B). 
Actividad 3. Razonamiento abstracto Propósito: Aplicar el razonamiento abstracto para resolver problemas lógicos, deduciendo ciertas consecuencias de la situación planteada figuras. Descripción: En esta actividad tendrás oportunidad de verificar las habilidades adquiridas para la aplicación del razonamiento abstracto. Indicaciones: 1. Regresa al aula y busca la Actividad 3. Razonamiento abstracto, en la lista de tareas. Una vez que la identifiques, da clic para acceder al cuestionario. 2. Responde el cuestionario, y cuando termines, revisa la realimentación. 3. El cuestionario te permitirá solamente dos intentos. Criterios de evaluación: El cuestionario tiene un valor del 10% sobre la evaluación final del curso. Lineamientos de entrega: Deberás responder el cuestionario en su totalidad. Recursos:  Cuestionario: Razonamiento abstracto. Para responder el cuestionario interactivo ingresa al aula virtual 
Cierre de la unidad 
A través de esta unidad revisamos diferentes ejemplos que nos permitieron desarrollar el razonamiento lógico-matemático, crear estructuras, resolver problemas no tan comunes en una asignatura como las matemáticas pero que contienen fundamentos matemáticos. 
No se abordaron contenidos matemáticos de manera específica porque la principal intención es aportar herramientas fundamentales para la creación de textos, utilizando el análisis y la toma de decisiones. Deberás considerar estos elementos para los conocimientos que vas a adquirir en el futuro.
Eje 2. Razonamiento lógico matemático 
Página 37 de 37 
Fuentes de consulta 
Zevallos, A. (2013). Razonamiento lógico 152 - verdades y mentiras. [Archivo de video]. Recuperado de https://www.youtube.com/watch?v=S_1AQM0LozE 
Zevallos, A. (2013). Analogías gráficas problema 201 - razonamiento abstracto. [Archivo de video]. Recuperado de https://www.youtube.com/watch?v=pKQ5t6n8vC4 
Ayala, O. (s/f). Razonamiento. Recuperado de: 
http://repositorio.utn.edu.ec/bitstream/123456789/1176/1/RAZONAMIENTO.pdf

Más contenido relacionado

La actualidad más candente

Planificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematicaPlanificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematica
Dario Javier Tubon Tite
 
Habilidades matematicas 1 Secundaria
Habilidades matematicas 1 SecundariaHabilidades matematicas 1 Secundaria
Habilidades matematicas 1 Secundaria
Juanmanueltirso Meneses Cordero
 
Plan de clase semanal n ¦ 1 10mo
Plan de clase semanal n ¦ 1 10moPlan de clase semanal n ¦ 1 10mo
Plan de clase semanal n ¦ 1 10mogatita5
 
Rubrica y listas de cotejo matematicas 5ºbloque
Rubrica y listas de cotejo matematicas 5ºbloqueRubrica y listas de cotejo matematicas 5ºbloque
Rubrica y listas de cotejo matematicas 5ºbloqueDiana Viveros
 
indicadores-de-logros-matematicas-9°-10°-y-11°-2012
indicadores-de-logros-matematicas-9°-10°-y-11°-2012indicadores-de-logros-matematicas-9°-10°-y-11°-2012
indicadores-de-logros-matematicas-9°-10°-y-11°-2012lmocek
 
Dificultades en el Aprendizaje de la Geometría
Dificultades en el Aprendizaje de la GeometríaDificultades en el Aprendizaje de la Geometría
Dificultades en el Aprendizaje de la Geometría
JorgeQuintero18
 
PRUEBAS TIPO PISA MATEMATICA RESUELTAS
PRUEBAS TIPO PISA MATEMATICA RESUELTASPRUEBAS TIPO PISA MATEMATICA RESUELTAS
PRUEBAS TIPO PISA MATEMATICA RESUELTAS
Rubén Quispe Sairitupa
 
Estrategias de enseñanza de álgebra y aritmética
Estrategias de enseñanza de álgebra y aritméticaEstrategias de enseñanza de álgebra y aritmética
Estrategias de enseñanza de álgebra y aritmética
YESSICA NATALI CORREA MARTINEZ
 
problemas de razonamiento algebraico
problemas de razonamiento algebraicoproblemas de razonamiento algebraico
problemas de razonamiento algebraico
Juanbernardo Garcia
 
Plan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachilleratoPlan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachillerato
Cris Panchi
 
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Ariel Marcillo
 
Planificacion 5 básico álgebra
Planificacion 5 básico álgebraPlanificacion 5 básico álgebra
Planificacion 5 básico álgebra
coklu
 
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICAESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
hogar
 
Pca matemática 8VO
Pca matemática 8VOPca matemática 8VO
Pca matemática 8VO
Elvira Suarez
 
Matematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docxMatematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docx
asagac
 
Área de figuras compuestas
Área de figuras compuestasÁrea de figuras compuestas
Área de figuras compuestas
Ruth Arroyo González
 
Polya y Alan Schoenfeld
Polya y Alan SchoenfeldPolya y Alan Schoenfeld
Polya y Alan Schoenfeld
Juan Yeison Leon Bernuy
 
Registros de representacion semiotica
Registros de representacion semioticaRegistros de representacion semiotica
Registros de representacion semiotica
Yacir Testa
 

La actualidad más candente (20)

Planificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematicaPlanificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematica
 
Habilidades matematicas 1 Secundaria
Habilidades matematicas 1 SecundariaHabilidades matematicas 1 Secundaria
Habilidades matematicas 1 Secundaria
 
Plan de clase semanal n ¦ 1 10mo
Plan de clase semanal n ¦ 1 10moPlan de clase semanal n ¦ 1 10mo
Plan de clase semanal n ¦ 1 10mo
 
Rubrica y listas de cotejo matematicas 5ºbloque
Rubrica y listas de cotejo matematicas 5ºbloqueRubrica y listas de cotejo matematicas 5ºbloque
Rubrica y listas de cotejo matematicas 5ºbloque
 
Planificación inecuaciones
Planificación  inecuacionesPlanificación  inecuaciones
Planificación inecuaciones
 
indicadores-de-logros-matematicas-9°-10°-y-11°-2012
indicadores-de-logros-matematicas-9°-10°-y-11°-2012indicadores-de-logros-matematicas-9°-10°-y-11°-2012
indicadores-de-logros-matematicas-9°-10°-y-11°-2012
 
Plan clases
Plan clasesPlan clases
Plan clases
 
Dificultades en el Aprendizaje de la Geometría
Dificultades en el Aprendizaje de la GeometríaDificultades en el Aprendizaje de la Geometría
Dificultades en el Aprendizaje de la Geometría
 
PRUEBAS TIPO PISA MATEMATICA RESUELTAS
PRUEBAS TIPO PISA MATEMATICA RESUELTASPRUEBAS TIPO PISA MATEMATICA RESUELTAS
PRUEBAS TIPO PISA MATEMATICA RESUELTAS
 
Estrategias de enseñanza de álgebra y aritmética
Estrategias de enseñanza de álgebra y aritméticaEstrategias de enseñanza de álgebra y aritmética
Estrategias de enseñanza de álgebra y aritmética
 
problemas de razonamiento algebraico
problemas de razonamiento algebraicoproblemas de razonamiento algebraico
problemas de razonamiento algebraico
 
Plan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachilleratoPlan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachillerato
 
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
 
Planificacion 5 básico álgebra
Planificacion 5 básico álgebraPlanificacion 5 básico álgebra
Planificacion 5 básico álgebra
 
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICAESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
 
Pca matemática 8VO
Pca matemática 8VOPca matemática 8VO
Pca matemática 8VO
 
Matematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docxMatematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docx
 
Área de figuras compuestas
Área de figuras compuestasÁrea de figuras compuestas
Área de figuras compuestas
 
Polya y Alan Schoenfeld
Polya y Alan SchoenfeldPolya y Alan Schoenfeld
Polya y Alan Schoenfeld
 
Registros de representacion semiotica
Registros de representacion semioticaRegistros de representacion semiotica
Registros de representacion semiotica
 

Destacado

Guía de actividades 2014 i 00 - razonamiento lógico matemático
Guía de actividades 2014 i 00 - razonamiento lógico matemáticoGuía de actividades 2014 i 00 - razonamiento lógico matemático
Guía de actividades 2014 i 00 - razonamiento lógico matemático
Ignacio Morales
 
Razonamiento matematico 1º3 b
Razonamiento matematico 1º3 bRazonamiento matematico 1º3 b
Razonamiento matematico 1º3 b349juan
 
Tic (4)
Tic (4)Tic (4)
Tic (4)ticuic
 
Modelo actividad
Modelo actividadModelo actividad
Modelo actividadgomez777
 
Sistemas de Razonamiento Lógico
Sistemas de Razonamiento LógicoSistemas de Razonamiento Lógico
Sistemas de Razonamiento Lógico
Jonathan Muñoz Aleman
 
Ejercicios de sucesiones aritmeticas y geometricas
Ejercicios de sucesiones aritmeticas y geometricasEjercicios de sucesiones aritmeticas y geometricas
Ejercicios de sucesiones aritmeticas y geometricas
Ramiro Blancas Romero
 
Power point sucesiones
Power point sucesionesPower point sucesiones
Power point sucesiones
jmuceda
 
Sucesiones1
Sucesiones1Sucesiones1
Sucesiones1
Mercedes García
 
Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)
Cesar Suarez Carranza
 
Problemas de sucesiones
Problemas de sucesionesProblemas de sucesiones
Problemas de sucesiones
Alice Mendez
 
Unidade 2 As relación de parentesco
Unidade 2 As relación de parentescoUnidade 2 As relación de parentesco
Unidade 2 As relación de parentesco
nieveslopez
 
RAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA U
RAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA URAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA U
RAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA U
Joshua Medina
 
Problem Solving
Problem SolvingProblem Solving
Problem Solving
jenPR
 
Cronometria 8
Cronometria 8Cronometria 8
Cronometria 8
Christian Infante
 
Banco de preguntas razonamiento lógico 2011
Banco de preguntas  razonamiento lógico  2011Banco de preguntas  razonamiento lógico  2011
Banco de preguntas razonamiento lógico 2011
sigherrera
 

Destacado (20)

Guía de actividades 2014 i 00 - razonamiento lógico matemático
Guía de actividades 2014 i 00 - razonamiento lógico matemáticoGuía de actividades 2014 i 00 - razonamiento lógico matemático
Guía de actividades 2014 i 00 - razonamiento lógico matemático
 
Razonamiento matematico 1º3 b
Razonamiento matematico 1º3 bRazonamiento matematico 1º3 b
Razonamiento matematico 1º3 b
 
Tic (4)
Tic (4)Tic (4)
Tic (4)
 
Modelo actividad
Modelo actividadModelo actividad
Modelo actividad
 
Razonamiento lógico ficha
Razonamiento lógico fichaRazonamiento lógico ficha
Razonamiento lógico ficha
 
Sistemas de Razonamiento Lógico
Sistemas de Razonamiento LógicoSistemas de Razonamiento Lógico
Sistemas de Razonamiento Lógico
 
Unidad 1.2
Unidad 1.2Unidad 1.2
Unidad 1.2
 
Ejercicios de sucesiones aritmeticas y geometricas
Ejercicios de sucesiones aritmeticas y geometricasEjercicios de sucesiones aritmeticas y geometricas
Ejercicios de sucesiones aritmeticas y geometricas
 
Power point sucesiones
Power point sucesionesPower point sucesiones
Power point sucesiones
 
Sucesiones1
Sucesiones1Sucesiones1
Sucesiones1
 
Cronometria alto 5
Cronometria alto 5Cronometria alto 5
Cronometria alto 5
 
Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)
 
Sucesiones&progresiones
Sucesiones&progresionesSucesiones&progresiones
Sucesiones&progresiones
 
Problemas de sucesiones
Problemas de sucesionesProblemas de sucesiones
Problemas de sucesiones
 
Unidade 2 As relación de parentesco
Unidade 2 As relación de parentescoUnidade 2 As relación de parentesco
Unidade 2 As relación de parentesco
 
RAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA U
RAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA URAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA U
RAZONAMIENTO LÓGICO Y MATEMÁTICO PARA INGRESAR A LA U
 
Problem Solving
Problem SolvingProblem Solving
Problem Solving
 
Cronometria 8
Cronometria 8Cronometria 8
Cronometria 8
 
Relojes
RelojesRelojes
Relojes
 
Banco de preguntas razonamiento lógico 2011
Banco de preguntas  razonamiento lógico  2011Banco de preguntas  razonamiento lógico  2011
Banco de preguntas razonamiento lógico 2011
 

Similar a Eje 2. razonamiento lógico matemático

Curso propedeutico eje2
Curso propedeutico eje2Curso propedeutico eje2
Curso propedeutico eje2
Jaime Ivan Gomez Flores
 
TIC en el Diseño, Desarrollo y Gerencia del Currículo
TIC en el Diseño, Desarrollo y Gerencia del CurrículoTIC en el Diseño, Desarrollo y Gerencia del Currículo
TIC en el Diseño, Desarrollo y Gerencia del Currículo
Hector Conde
 
Tarea competencia matemática
Tarea competencia matemáticaTarea competencia matemática
Tarea competencia matemáticaJulia Garcia
 
Enseñar y aprender matemática síntesis augusto burgos
Enseñar y aprender matemática síntesis augusto burgosEnseñar y aprender matemática síntesis augusto burgos
Enseñar y aprender matemática síntesis augusto burgos
Augusto Burgos
 
Modulo 11 informatica
Modulo 11 informaticaModulo 11 informatica
Modulo 11 informatica
Jainer Lopez
 
El uso indiscriminado de los algoritmos
El uso indiscriminado de los algoritmosEl uso indiscriminado de los algoritmos
El uso indiscriminado de los algoritmos
Martha Cortés
 
Moreira jorge antonio_tp_final_1
Moreira jorge antonio_tp_final_1Moreira jorge antonio_tp_final_1
Moreira jorge antonio_tp_final_1
Jorge Moreira
 
Taller de algoritmos y programación - Congreso internacional de educadores UPC
Taller de algoritmos y programación - Congreso internacional de educadores UPCTaller de algoritmos y programación - Congreso internacional de educadores UPC
Taller de algoritmos y programación - Congreso internacional de educadores UPC
Ricardo Monge Rogel
 
N°25 pensamiento lógico matemático
N°25 pensamiento lógico   matemáticoN°25 pensamiento lógico   matemático
N°25 pensamiento lógico matemático
Floralba Puentes de Cano
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
Bayron Chavisnan
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
PamelaValverde6
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
AndresCrdova1
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
alejandrinamaritz
 
Compet matematica
Compet matematicaCompet matematica
Compet matematica
Celia Elizabeth Villagra
 
Manual de practivas v 3.0
Manual de practivas v 3.0Manual de practivas v 3.0
Manual de practivas v 3.0
Tina Campos
 
tecnologiaa
tecnologiaatecnologiaa
tecnologiaa
karoll gómez
 
Guía de matemáticas_4o
Guía de matemáticas_4oGuía de matemáticas_4o
Guía de matemáticas_4o
Rogelio López
 

Similar a Eje 2. razonamiento lógico matemático (20)

Curso propedeutico eje2
Curso propedeutico eje2Curso propedeutico eje2
Curso propedeutico eje2
 
TIC en el Diseño, Desarrollo y Gerencia del Currículo
TIC en el Diseño, Desarrollo y Gerencia del CurrículoTIC en el Diseño, Desarrollo y Gerencia del Currículo
TIC en el Diseño, Desarrollo y Gerencia del Currículo
 
Tarea competencia matemática
Tarea competencia matemáticaTarea competencia matemática
Tarea competencia matemática
 
Barba y calvo 78
Barba y calvo 78Barba y calvo 78
Barba y calvo 78
 
Enseñar y aprender matemática síntesis augusto burgos
Enseñar y aprender matemática síntesis augusto burgosEnseñar y aprender matemática síntesis augusto burgos
Enseñar y aprender matemática síntesis augusto burgos
 
Modulo 11 informatica
Modulo 11 informaticaModulo 11 informatica
Modulo 11 informatica
 
El uso indiscriminado de los algoritmos
El uso indiscriminado de los algoritmosEl uso indiscriminado de los algoritmos
El uso indiscriminado de los algoritmos
 
Moreira jorge antonio_tp_final_1
Moreira jorge antonio_tp_final_1Moreira jorge antonio_tp_final_1
Moreira jorge antonio_tp_final_1
 
Taller de algoritmos y programación - Congreso internacional de educadores UPC
Taller de algoritmos y programación - Congreso internacional de educadores UPCTaller de algoritmos y programación - Congreso internacional de educadores UPC
Taller de algoritmos y programación - Congreso internacional de educadores UPC
 
N°25 pensamiento lógico matemático
N°25 pensamiento lógico   matemáticoN°25 pensamiento lógico   matemático
N°25 pensamiento lógico matemático
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
 
Pensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diaposPensamiento computacional-en-el-aula-diapos
Pensamiento computacional-en-el-aula-diapos
 
Compet matematica
Compet matematicaCompet matematica
Compet matematica
 
Manual de practivas v 3.0
Manual de practivas v 3.0Manual de practivas v 3.0
Manual de practivas v 3.0
 
Actividad 8
Actividad 8Actividad 8
Actividad 8
 
2 act8
2 act82 act8
2 act8
 
tecnologiaa
tecnologiaatecnologiaa
tecnologiaa
 
Guía de matemáticas_4o
Guía de matemáticas_4oGuía de matemáticas_4o
Guía de matemáticas_4o
 

Más de AraMalMarti

Eje3 planeacion aprendizaje
Eje3 planeacion aprendizajeEje3 planeacion aprendizaje
Eje3 planeacion aprendizaje
AraMalMarti
 
Portafolio de presentación
Portafolio de presentaciónPortafolio de presentación
Portafolio de presentación
AraMalMarti
 
Portafolio de evaluación
Portafolio de evaluaciónPortafolio de evaluación
Portafolio de evaluación
AraMalMarti
 
Portafolio de trabajo Objetos Gráficos
Portafolio de trabajo Objetos GráficosPortafolio de trabajo Objetos Gráficos
Portafolio de trabajo Objetos Gráficos
AraMalMarti
 
Araceli maldonado portafolio 1
Araceli maldonado portafolio 1Araceli maldonado portafolio 1
Araceli maldonado portafolio 1
AraMalMarti
 
Presentacion araceli maldonado_martinez_dpei-1336
Presentacion araceli maldonado_martinez_dpei-1336Presentacion araceli maldonado_martinez_dpei-1336
Presentacion araceli maldonado_martinez_dpei-1336
AraMalMarti
 
Actividad Integradora Nodo Problematico II
Actividad Integradora Nodo Problematico IIActividad Integradora Nodo Problematico II
Actividad Integradora Nodo Problematico IIAraMalMarti
 

Más de AraMalMarti (7)

Eje3 planeacion aprendizaje
Eje3 planeacion aprendizajeEje3 planeacion aprendizaje
Eje3 planeacion aprendizaje
 
Portafolio de presentación
Portafolio de presentaciónPortafolio de presentación
Portafolio de presentación
 
Portafolio de evaluación
Portafolio de evaluaciónPortafolio de evaluación
Portafolio de evaluación
 
Portafolio de trabajo Objetos Gráficos
Portafolio de trabajo Objetos GráficosPortafolio de trabajo Objetos Gráficos
Portafolio de trabajo Objetos Gráficos
 
Araceli maldonado portafolio 1
Araceli maldonado portafolio 1Araceli maldonado portafolio 1
Araceli maldonado portafolio 1
 
Presentacion araceli maldonado_martinez_dpei-1336
Presentacion araceli maldonado_martinez_dpei-1336Presentacion araceli maldonado_martinez_dpei-1336
Presentacion araceli maldonado_martinez_dpei-1336
 
Actividad Integradora Nodo Problematico II
Actividad Integradora Nodo Problematico IIActividad Integradora Nodo Problematico II
Actividad Integradora Nodo Problematico II
 

Eje 2. razonamiento lógico matemático

  • 1. Eje 2. Razonamiento lógico matemático Página 1 de 37 Eje 2. Razonamiento lógico matemático Universidad Abierta y a Distancia de México UnADM Curso Propedéutico para el Aprendizaje Autogestivo en un Ambiente Virtual
  • 2. Eje 2. Razonamiento lógico matemático Página 2 de 37
  • 3. Eje 2. Razonamiento lógico matemático Página 3 de 37 Eje 2. Razonamiento lógico matemático “[…] Se ha convertido casi en un comentario cliché, que nadie hoy en día alardea de ser un ignorante en literatura, pero es aceptable socialmente alardear de ignorar la ciencia y afirmar orgulloso que se es un incompetente en matemáticas”. Richard Dawkins Dentro del razonamiento lógico-matemático se pretende medir habilidades para contextualizar las matemáticas en nuevas situaciones, lo cual propicia generar nuevos conocimientos y aplicarlos en trabajos prácticos. Estas habilidades permiten además, procesar, analizar y utilizar gran cantidad de información en las áreas de las matemáticas como la aritmética, el álgebra, la geometría y otros campos del conocimiento. El razonamiento matemático está relacionado con la habilidad matemática, lo que permite comprender conceptos y proponer algoritmos para resolver problemas, ya sean éstos contextualizados o abstractos. En este apartado te presentamos problemas de razonamiento lógico-matemático, puesto que el dominio de estas áreas es indispensable para iniciar tus estudios en la Universidad Abierta y a Distancia de México (UnADM). En la primera unidad se explican los métodos y técnicas para resolver problemas, partiendo del razonamiento inductivo, complementado con el razonamiento deductivo. Los problemas se presentan de acuerdo al grado de complejidad, pero, si se toman en cuenta los procedimientos presentados, dicha complejidad no será impedimento para resolver los problemas. En la segunda unidad se muestran métodos de Polya para resolver problemas matemáticos, así como diversos ejemplos correspondientes a éstos. Otra parte fundamental que revisaremos, es el razonamiento lógico y abstracto, donde se podrán desarrollar mecanismos para la solución de secuencias de figuras. Para comprender mejor estos elementos, es necesario prestar mucha atención a los ejemplos que se presentan a lo largo del curso, ya que éstos ayudarán a resolver aquellas situaciones que se proponen dentro de la actividad.
  • 4. Eje 2. Razonamiento lógico matemático Página 4 de 37 Competencias A través de este eje desarrollarás la siguiente competencia específica: Desarrolla la habilidad de resolver problemas mediante los conceptos generales de matemáticas básicas para su representación dentro de la vida cotidiana. Propósitos Los propósitos de este eje son los siguientes:  Utilizar el razonamiento lógico-matemático para crear estructuras de conocimientos.  Desarrollar la capacidad de análisis y construcción de esquemas que permitan la solución de un problema.  Resolver problemas mediante el uso del razonamiento lógico-matemático. Metodología: ¿cómo vas a desarrollar las competencias? La forma en que recomendamos cursar este eje es revisar y analizar los ejemplos que proponemos, dado que ellos permitirán resolver los diferentes planteamientos que se presentan en cada una de las unidades que estudiaremos. Además, es indispensable que revisemos los recursos que se sugieren, ya que son una herramienta valiosa para lograr la competencia del curso. Este eje, aunque se asemeja al área de matemáticas, será de utilidad para la realización de la actividad integradora, donde nos permitirá razonar, estructurar y tomar decisiones al momento de elección o determinación del giro de tu lectura final. Así que te invitamos a analizar y resolver los diferentes planteamientos que presentamos en este eje.
  • 5. Eje 2. Razonamiento lógico matemático Página 5 de 37 Planeación para tu aprendizaje Para conocer las actividades, recursos y la forma en que será evaluado tu trabajo, revisa la siguiente planeación en la cual te mostramos todos los elementos necesarios para cursar este eje de manera satisfactoria. Unidad 1. Razonamiento inductivo y razonamiento deductivo 1.1. Razonamiento inductivo 1.2. Razonamiento deductivo Logros: 1. Identificar los elementos necesarios para la resolución de problemas 2. Aplicar el razonamiento inductivo y el razonamiento deductivo en la resolución de problemas Competencias digitales: Utilizar medios y entornos digitales para interactuar con otros. Actividad Evaluación Horas Herramienta Recursos Actividad 1. Razonamiento inductivo y razonamiento deductivo 10% 12 horas 9 para lectura de contenidos 3 para la resolución del cuestionario Cuestionario moodle Contenido en plataforma Lectura:  Razonamiento inductivo y deductivo Videos:  Razonamiento inductivo  Razonamiento deductivo Unidad 2. El arte de resolver problemas 2.1. Uso de tabla o diagrama 2.2. Trabajar hacia atrás 2.3. Uso de ensayo y error 2.4. Suposición y verificación 2.5. Elaboración de un boceto Logro: 1. Identificar los cuatro pasos de Polya para la resolución de problemas de razonamiento lógico-
  • 6. Eje 2. Razonamiento lógico matemático Página 6 de 37 matemático.(Compresión) 2. Resolver problemas de lógica matemática por medio de los pasos de Polya. (Análisis) Competencias digitales: Maneja software para la elaboración de organizadores gráficos; utiliza habilidades ofimáticas. Actividad Evaluación Horas Herramienta Recursos Actividad 2. Ingenio lógico- matemático 10% 12 horas 9 para revisión de recursos 3 para solución de la actividad Cuestionario moodle Contenido en plataforma. Lectura:  Método de cuatro pasos de Polya Unidad 3. Razonamiento lógico y razonamiento abstracto 3.1. Ejemplos de razonamiento lógico 3.2. Relación de tiempo 3.3. Ordenamiento lineal 3.4. Parentesco Logro: 1. Identificar problemas de orden lógico o abstracto por medio de sus características. (Compresión) 2. Resolver problemas de lógica matemática utilizando los diferentes métodos aprendidos en las unidades anteriores. (Análisis) Competencias digitales: Publicar en un blog; postear en los blog de sus compañeros(as). Actividad Evaluación Horas Herramienta Recursos Actividad 3. Razonamiento abstracto 10% 13 Horas 10 para el estudio de los recursos 3 para la solución de la actividad Cuestionario moodle Contenido en plataforma. Lecturas:  Ordenamiento y clasificación jerárquica  Razonamiento lógico y abstracto Videos:  Razonamiento lógico  Razonamiento abstracto
  • 7. Eje 2. Razonamiento lógico matemático Página 7 de 37
  • 8. Eje 2. Razonamiento lógico matemático Página 8 de 37 Mapa general del eje Desarrolla la habilidad de resolver problemas mediante los conceptos generales de matemáticas básicas para su representación dentro dela vida cotidianaUnidad 1. Razonamiento inductivo y deductivoUnidad 2. El arte de resolver problemasUnidad 3. Razonamiento lógico y abstractoActividad 1. Inducción y deducciónActividad 2. Ingenio lógico matemáticoActividad 3. Razonamiento abstractoEje 2. Razonamiento lógico matemático
  • 9. Eje 2. Razonamiento lógico matemático Página 9 de 37 Unidad 1. Razonamiento inductivo y deductivo En la vida cotidiana utilizamos el razonamiento para tomar decisiones en alguna situación. Dicho razonamiento nos permite estructurar diferentes enunciados que, a su vez, permiten determinar un curso de acción, sea correcto o incorrecto. Lo mismo sucede en la escuela, constantemente debemos tomar decisiones dentro del ámbito estudiantil, para lo cual utilizamos dos tipos de razonamiento: el inductivo y el deductivo. Pero, te has preguntado… Para profundizar sobre los tipos de razonamiento, revisa la siguiente lectura Razonamiento inductivo y deductivo. Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron determinar técnicas que después utilizaron constantemente, como recetas de cocina, lo cual se repitió una y otra vez en problemas similares. Al observar que esta técnica funcionaba con ciertos tipos de problemas, concluyeron que este método funcionaba para problemas del mismo tipo. Cuando resolvemos un problema, podemos llamar a la solución conjetura, que es una hipótesis que se fundamenta en observaciones repetidas de un proceso o patrón determinado. A este tipo de procesos, por su parte, se le llama razonamiento inductivo. El razonamiento inductivo se define como obtener una conclusión general, o conjetura, a partir de observaciones repetidas en ejemplos específicos; dicha conclusión puede llegar a ser verdadera o no. Es fácil demostrar que la solución a estos ejemplos es falsa, pues basta con encontrar un ejemplo que así lo compruebe; a ese tipo se le conoce como contraejemplo. Podemos mencionar, además, el siguiente ejemplo para ilustrar mejor el punto. Conjetura.
  • 10. Eje 2. Razonamiento lógico matemático Página 10 de 37 Todos los números primos son impares: 2, 3, 5, 7, 11, 13, 17, 19, 23... Si observamos el conjunto de números, todos son números primos, mas no todos son impares, por lo que podemos crear un contraejemplo para refutar la conjetura. Contraejemplo El número 2 es un número primo, pero no un número impar. Observa los siguientes ejemplos de razonamiento inductivo: Conjetura 1: Alberto tiene 25 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conjetura 2: Juan tiene 23 años, vive en la ciudad de México y siempre vota por partidos de Izquierda. Conjetura 3: Alberto tiene 22 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conclusión: Los ciudadanos entre 20 y 25 años que viven en la ciudad de México siempre votan por partidos de izquierda. Estas premisas pueden ser refutadas y demostrarse su falsedad, dado que no todas las personas que viven en la ciudad de México votarán por partidos de izquierda. Este tipo de razonamiento inductivo es un método potencialmente fuerte para llegar a una conclusión, mas no existe la certeza de que sea verdadera. Por esta razón, algunos matemáticos no aceptan una verdad como absoluta en tanto que no se demuestre de manera formal por medio del razonamiento deductivo. El razonamiento deductivo inició con los matemáticos griegos, como revelan los trabajos de Pitágoras, Arquímedes y Euclides, entre otros, quienes aplicaron conceptos generales a problemas específicos, lo que dio como resultado un desarrollo lógico y estructurado de las matemáticas. Un razonamiento deductivo se define como la aplicación de principios generales a ejemplos específicos. En los siguientes ejemplos se muestra la diferencia entre un razonamiento inductivo y otro deductivo. Observa los siguientes ejemplos de razonamiento inductivo: Conjetura 1: Alberto tiene 25 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conjetura 2: Juan tiene 23 años, vive en la ciudad de México y siempre vota por partidos de Izquierda. Conjetura 3: Alberto tiene 22 años, vive en la ciudad de México y siempre vota por partidos de izquierda. Conclusión: Los ciudadanos entre 20 y 25 años que viven en la ciudad de México siempre votan por partidos de izquierda. Estas premisas pueden ser refutadas y demostrarse su falsedad, dado que no todas las personas que viven en la ciudad de México votarán por partidos de izquierda. Ahora te presentamos un ejemplo de razonamiento deductivo, el cual es el más utilizado en problemas lógico-matemáticos. Sin embargo, no dejamos de lado el razonamiento inductivo, que nos lleva a resolver de manera parcial o total algunos problemas. Conjetura 1: Todos los panecillos tardan una hora en hornearse.
  • 11. Eje 2. Razonamiento lógico matemático Página 11 de 37 Conjetura 2: Son las 2 de la tarde y Adriana mete los panecillos al horno. Conclusión: Los panecillos estarán listos a las 3:00 pm. Veamos algunos ejemplos de los dos tipos de razonamientos, en los cuales utilizaremos los números naturales o números cardinales. Considera la siguiente secuencia de números: 1, 8, 15, 22, 29. ¿Cuál es el número que sigue en la lista?, ¿cuál es el patrón? Si observamos y analizamos los números, vemos que 1+7= 8, y 8+7=15. ¿Sumamos 15 y 7 para obtener 22?, ¿sumamos 22 y 7 para obtener 29? Sí, efectivamente. Sumamos 7 a todo número precedente, de modo que el número siguiente de la secuencia es 36, puesto que 29+7=36. Considerando el ejemplo anterior, para identificar el siguiente número de la secuencia, utilizamos la observación, y se determina tanto el patrón como el número que sigue en la secuencia. Este es un ejemplo de razonamiento inductivo. Usando el razonamiento inductivo se concluye que 41 era el número siguiente, pero, ¿qué pasa si se presenta otra respuesta, por ejemplo, se relaciona con las fechas de los meses Junio y Julio? Junio D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Julio D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Entonces, la secuencia quedaría de manera diferente: 1, 8, 15, 22, 29, 6, 13, 20, 27 Si analizamos la secuencia, el patrón sigue siendo 7, pero el consecutivo cambia. Aquí se muestra una falla importante del razonamiento inductivo, el cual no nos garantiza que la verdad en un caso específico será verdad en lo general. Por lo tanto, el razonamiento inductivo no garantiza un resultado verdadero, pero ofrece los medios para hacer una conjetura. En matemáticas es común utilizar la expresión exponencial, que no es otra cosa que representar la multiplicación repetida:
  • 12. Eje 2. Razonamiento lógico matemático Página 12 de 37 Base = 3.3.3 = 27 Exponente En el razonamiento deductivo se usan enunciados generales para aplicarlos en situaciones específicas, por ejemplo el teorema de Pitágoras: “En un triángulo rectángulo, la suma del cuadrado de los catetos, es igual al cuadrado de la hipotenusa.” Cateto opuesto Hipotenusa Cateto adyacente Si los catetos miden 4 y 6 metros, podemos calcular la longitud de la hipotenusa, representada por . ( ) ( ) √ Por lo tanto, la hipotenusa mide10 metros, aplicando la regla general del teorema de Pitágoras. El razonamiento de un problema normalmente requiere de algunas premisas, lo cual puede ser un supuesto, una ley, un teorema, una definición matemática, observación o idea. Después, con el razonamiento inductivo o deductivo, se puede obtener la solución, misma que se vuelve un argumento lógico. Podemos concluir que el razonamiento inductivo se utiliza con frecuencia para predecir la respuesta de ejercicios de cálculo, como se muestra en el siguiente ejemplo. Predice la multiplicación y el producto que sigue en esta lista de operaciones: Primero, debemos identificar que el 21 se repite en todas las operaciones; en tanto que en el segundo factor, el incremento entre 5 y 8 es 3, por lo tanto, la siguiente multiplicación sería: - por lo cual es verdadero.
  • 13. Eje 2. Razonamiento lógico matemático Página 13 de 37 Cuando utilizamos el razonamiento inductivo, corremos ciertos riesgos asociados al razonamiento. Un ejemplo clásico es el de dividir por regiones una circunferencia, partiendo de puntos. Veamos la siguiente gráfica: Si observamos la figura, en la primera se colocó un punto sobre la superficie, y se denota una región; si en cambio, colocamos dos puntos sobre la circunferencia y los unimos con una línea recta, formamos dos regiones. Si finalmente, colocamos tres puntos sobre la circunferencia y los unimos por medio de líneas rectas, no se crean tres regiones, sino cuatro. Esto se puede representar por medio de una progresión geométrica: ¿Qué pasaría si colocamos cuatro puntos en la circunferencia, o cinco?, ¿cuántas regiones tendríamos? Representando cuatro y cinco puntos en la circunferencia, quedarían de la siguiente manera: Si volvemos a representarlo en la progresión geométrica, quedaría de la siguiente manera: Analicemos ¿Cuál sería el número de regiones si colocamos 6 puntos en la circunferencia?
  • 14. Eje 2. Razonamiento lógico matemático Página 14 de 37 Si respondemos por medio de una conjetura tomada de un razonamiento inductivo, la progresión quedaría de la siguiente manera: Representándolo gráficamente, sería: ¡Nos han robado! Sólo tenemos 31 regiones. Ahora probemos con siete puntos en la circunferencia. Razonando inductivamente, tendríamos: Representándolo gráficamente, tendríamos: ¡Nos han vuelto a robar! Ahora tenemos 57 regiones, cuando deberíamos tener 64. Conclusión: Este tipo de ejemplos ilustran que en matemáticas no podemos simplemente guiarnos por observaciones; en su lugar, necesitamos argumentos lógicos y rigurosos que constituyen una prueba que demuestra la veracidad del proceso.
  • 15. Eje 2. Razonamiento lógico matemático Página 15 de 37 Una vez que hayas analizado la lectura recomendada, observa con atención los siguientes videos, en los que encontrarás una explicación clara de los conceptos de inducción y deducción. Mansilla, M. (2012). Razonamiento inductivo y deductivo parte 1 y 2. [Archivo de video]. Recuperado de https://www.youtube.com/watch?v=Uh3pyW4mf8c y https://www.youtube.com/watch?v=LM6tl4baz8A Después de haber analizado el documento y el video, te invitamos a leer la siguiente reflexión, donde comprobaremos que, algunas veces, actuar de manera inductiva nos lleva a resultados equivocados si no demostramos antes lo que solamente asumimos. El científico y las pulgas Un científico tenía dos frascos grandes frente a él sobre la mesa del laboratorio. El frasco de la izquierda contenía 100 pulgas, en tanto que el frasco de la derecha estaba vacío. El científico sacó con cuidado una pulga del frasco de la izquierda, la colocó sobre la mesa en medio de los dos frascos, dio un paso hacia atrás, y con voz fuerte dijo “salta”. La pulga saltó y luego la colocó en el frasco de la derecha. El científico sacó entonces cuidadosamente una segunda pulga del frasco de la izquierda y la colocó sobre la mesa entre los dos frascos. De nuevo dio un paso hacia atrás y, con voz fuerte, dijo “salta”. La pulga saltó y fue colocada en el frasco de la derecha. El científico trató del mismo modo a cada una de las 100 pulgas del frasco de la izquierda y cada pulga saltó como se le ordenó. Aplicó la misma mecánica nuevamente con las pulgas de la derecha, únicamente con un cambio. El científico sacó una pulga del frasco de la derecha, le arrancó las patas traseras, y colocó la pulga sobre la mesa, dio un paso hacia atrás y dijo con voz fuerte “salta”. La pulga no saltó y fue colocada en el frasco de la izquierda. El científico hizo lo mismo con las 100 pulgas y ninguna de ellas saltó cuando se les ordenó, por lo que el científico llegó a la siguiente conclusión: Cuando se arrancan las patas traseras a una pulga, se vuelve sorda.
  • 16. Eje 2. Razonamiento lógico matemático Página 16 de 37 Actividad 1. Razonamiento inductivo y deductivo Propósito: Verificar el conocimiento obtenido sobre razonamiento deductivo y razonamiento inductivo. Descripción: Con esta actividad podrás evaluar tus habilidades para la resolución de problemas matemáticos aplicando el razonamiento inductivo y deductivo. Indicaciones: 1. Regresa al aula y busca la Actividad 1. Razonamiento inductivo y deductivo, en la lista de tareas. Una vez que la identifiques, da clic para acceder al cuestionario. 2. Responde el cuestionario, y cuando termines, revisa la realimentación. 3. El cuestionario te permitirá solamente dos intentos. Criterios de evaluación: El cuestionario tiene un valor del 10% sobre la evaluación final del curso. Lineamientos de entrega: Deberás responder el cuestionario en su totalidad. Recursos: Cuestionario: Razonamiento inductivo y deductivo Para responder el cuestionario interactivo debes ingresar al aula virtual. Cierre de la unidad A lo largo de esta unidad revisamos que, antes de resolver un problema, ya sea de ámbito matemático o cualquier situación, debemos estructurarlo para poder identificar los elementos necesarios para resolverlo. El razonamiento inductivo y el razonamiento deductivo nos permiten formar estas estructuras; el primero determina inicialmente un resultado que puede o no tener validez, en tanto que el segundo verifica este resultado, por lo cual ambos resultan útiles. Este principio nos ayuda no sólo a resolver cualquier tipo de problemas, sino a desarrollar diferentes habilidades, así como la capacidad de razonar, tomar decisiones y generar nuevas ideas en cualquier ámbito educativo.
  • 17. Eje 2. Razonamiento lógico matemático Página 17 de 37 Fuentes de consulta Castro, L. (s/f). Diez plataformas para crear un blog [About.com]. Recuperado de http://aprenderinternet.about.com/od/ConceptosBasico/tp/Diez-Plataformas-Para-Crear- Un-Blog.htm Mansilla, M. (2012). Razonamiento inductivo, deductivo parte 1 y 2 [archivo de video]. Recuperado de https://www.youtube.com/watch?v=Uh3pyW4mf8c y https://www.youtube.com/watch?v=LM6tl4baz8A Zevallos, A. (2001, 30 de marzo). Razonamiento Lógico - 17 Problemas Resueltos - (Razonamiento Inductivo y Deductivo, Problemas Recreativos) – Solucionario [El blog del profe Alex]. Recuperado de: http://profe-alexz.blogspot.mx/2011/03/razonamiento-logico- 17-problemas.html
  • 18. Eje 2. Razonamiento lógico matemático Página 18 de 37 Unidad 2. El arte de resolver problemas Ahora en esta unidad te brindamos algunos métodos de solución de problemas, tomados desde la aportación de George Polya, quien fue uno de los autores que propusieron el método de resolución de problemas. Además, te mostramos diferentes ejemplos y técnicas por los cuales podemos resolver problemas. Como hemos visto en la primera unidad, el razonamiento inductivo puede ser útil para iniciar la solución de un problema, pero también debemos utilizar el razonamiento deductivo para comprobar si la solución es veraz o falsa. Para resolver problemas debemos tener una organización al momento de comprender, analizar, clasificar y determinar el resultado, puesto que si sólo nos guiamos por conjeturas o premisas, podemos caer en errores que no dificulte su solución adecuada. Es por ello que existen procesos o tipos de estrategias para resolver un problema, a continuación te mostramos algunos de éstos. Método de cuatro pasos de Polya La estrategia más conocida es la de George Polya. Nacido en Hungría en 1887, Polya fue un matemático que desarrolló diversas técnicas para la solución de problemas. Su publicación más famosa fue “How to solve it” (Cómo resolverlo), donde propuso un método de cuatro pasos para la solución de problemas. Revisa y reflexiona sobre el método de cuatro pasos que propuso Polya, expuesto en el documento Método de cuatro pasos y relaciónalo con cada uno de los cinco ejemplos que a continuación te mostramos:
  • 19. Eje 2. Razonamiento lógico matemático Página 19 de 37 Método de cuatro pasos de Polya A continuación te presentamos en qué consiste el método de cuatro pasos de Polya para la solución de problemas: Paso 1 Comprenda el problema. Usted no puede resolver un problema si no entiende qué le pidieron calcular. Se debe leer y analizar el problema cuidadosamente. Tal vez sea necesario leerlo varias veces. Después de eso, pregúntese, ¿qué debo calcular? Paso 2 Elabore un plan: Existen muchas maneras de enfrentar un problema. Elija un plan adecuado para el problema específico que está resolviendo. Paso 3 Aplique un plan: Una vez que sabe cómo enfocar el problema, ponga en práctica ese plan. Tal vez llegue a “un callejón sin salida” y encuentre obstáculos imprevistos, pero debe ser persistente. Paso 4 Revise y verifique: Revise su respuesta para ver que sea razonable. ¿Satisface las condiciones del problema? ¿Se han contestado todas las preguntas que plantea el problema? ¿Es posible resolver el problema de manera diferente y llegar a la misma respuesta? El paso 2 del método para la solución de problemas de Polya aconseja elaborar un plan. Aquí se presentan algunas sugerencias y estrategias que han demostrado ser útiles. Sugerencias para la solución de problemas Elabore una tabla o diagrama Busque un patrón Resuelva un problema similar más sencillo Elabore un bosquejo Use el razonamiento inductivo Formule una ecuación y resuélvala Si una fórmula aplica, úsela Trabaje hacia atrás Suponga y verifique Use ensayo y error Use el sentido común Busque la trampa que se le tiende en el caso de que una respuesta parezca demasiado evidente o imposible Cuando a George Polya se le preguntaba cómo llegó a ser matemático, él contestaba que no era lo suficientemente inteligente para ser físico, y demasiado para ser filósofo, así que eligió matemáticas, que es una cosa intermedia. Ahora que conociste los métodos propuestos por Polya, es momento de revisar algunos ejemplos para que te vayas familiarizando con estos procesos. Recuerda que esto te será útil durante toda la carrera profesional que curses. El desarrollo del plan que nos propone Polya requiere el uso de varios métodos.
  • 20. Eje 2. Razonamiento lógico matemático Página 20 de 37 Ejemplos de Métodos para resolver problemas 1. Uso de tabla o diagrama Se tomará un ejemplo del libro “Liber Abaci” del matemático Leonardo Pisano, conocido como Fibonacci. Ejemplo 1. Un hombre colocó un par de conejos en una jaula. Durante el primer mes los conejos no se reprodujeron, pero cada mes a partir de entonces tuvieron una nueva pareja de conejos. Si cada nueva pareja se reprodujera de la misma manera, ¿cuántas parejas de conejos habría al cabo de un año? Solución: Se comenzará con el método que propone George Polya: Paso 1. Comprende el problema: la intención es comprender qué es lo que solicita el problema, y la mejor manera de hacerlo es redactando el problema para entenderlo correctamente. Por ejemplo, ¿cuántas parejas de conejos tendrá el hombre al final del año, si inicia con una pareja de conejos que no procrea durante el primer mes, pero cada mes siguiente cada pareja que tuvieron procrea un nuevo par? Paso 2. Elabora un plan: en el ejemplo se identifica un patrón definido de cómo se reproducen los conejos, así que podrías construir la siguiente tabla: Mes Números de parejas al inicio Número de nuevas parejas procreadas= Números de parejas al final del mes
  • 21. Eje 2. Razonamiento lógico matemático Página 21 de 37 1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12° La respuesta estará aquí. Paso 3. Aplica el plan: al inicio del primer mes sólo hay una pareja de conejos, y no se reproducen durante este periodo; es decir, 1+0 = 1. Este patrón continúa, pero al segundo mes hay dos parejas; es decir, 1+1 =2. Al tercer mes solamente se reproduce una pareja, porque la segunda no se reproduce durante su primer mes de vida; es decir 2+1=3. Al seguir el patrón, la tabla quedaría de la siguiente manera. Mes Números de parejas al inicio Número de nuevas parejas procreadas= Números de parejas al final del mes 1° 1 0 1 2° 1 1 2 3° 2 1 3 4° 3 2 5 5° 5 3 8 6° 8 5 13 7° 13 8 21 8° 21 13 34 9° 34 21 55 10° 55 34 89 11° 89 55 144 12° 144 89 233 Habrá 233 parejas de conejos al final del año. Paso 4. Revisa y verifica: regresa y asegúrate de que la interpretación del problema fue correcta; verifica si la suma de los números coincide con los resultados. 2. Trabajar hacia atrás
  • 22. Eje 2. Razonamiento lógico matemático Página 22 de 37 Planteamiento Alberto asiste cada semana al Hipódromo de las Américas para las carreras de caballo con sus amigos. En una semana duplicó su dinero, pero luego perdió $300. Regresó con su dinero la siguiente semana, lo triplicó, y luego perdió $600. La siguiente semana volvió a llevar su dinero y lo intentó nuevamente. En esta ocasión cuadruplicó su dinero, y luego jugó lo suficiente para llevarse a su casa un total de $6,000. ¿Con cuánto inició la primera semana? Solución Como el problema requiere determinar la cantidad de dinero con que inició Alberto, y se conoce la cifra final, se puede aplicar el método de trabajar hacía atrás. La cantidad final es $6,000, y representa cuatro veces la cantidad con la que inició la tercera semana. Se divide $6,000 entre 4, para saber la cantidad que tenía la tercera semana, lo que resulta ser $1,500. Antes de perder $600 la segunda semana, tenía 1500 + 600, o sea, 2,100. Es decir, triplicó su dinero, pues la segunda semana inició con 2,100 dividido entre 3, es decir, 700. Al repetir este proceso en la primera semana, sería: Lo cual representa el doble de la cifra con la que inició, por lo tanto: Respuesta Para verificar si el procedimiento es correcto, se puede representar en ecuaciones: Primera semana, ( ) Segundo semana, ( ) Tercera semana, ( ) 3. Uso de ensayo y error Pedro, Raúl y Ana son amigos, y cada uno es dueño de sólo uno de los siguientes animales: perro, gato y tortuga. Identifica el nombre de la persona propietaria de cada animal con base en los siguientes datos: 1.- El sobrino de Ana tiene un gato 2.- Pedro tiene un perro 3.- Pedro no es el dueño de la tortuga
  • 23. Eje 2. Razonamiento lógico matemático Página 23 de 37 Solución: Se parte por medio de ensayo y error. Se proponen cada uno de los datos y todas las combinaciones posibles, y se eliminan aquellas que contradicen alguno de los datos hasta obtener asignaciones completas. El anterior sería un ejemplo de combinaciones posibles, aunque se podrían colocar otras, como: 1. Pedro tiene la tortuga Falso 2. Pedro tiene el perro Verdadero 3. Raúl tiene la tortuga Falso 4. Raúl tiene el perro Falso 5. Raúl tiene el gato debe ser cierta por que no contradice ninguna información y es la única opción disponible 6. Ana tiene la tortuga no contradice ninguna información 7. Ana tiene el perro Falso 8. Ana tiene el gato Falso, ya que un animal no puede tener dos dueños 9. Ana tiene el gato Falso 10. Ana tiene la tortuga Verdadero 4. Suposición y verificación Planteamiento A las orillas de un río se vio a la cuarta parte de una manada de borregos. El doble de la raíz cuadrada de esa manada se fue al establo; y 3 por 5 camellos permanecieron a la orilla del rio en espera del pastor. ¿Cuál es el número de camellos en esa manada? Solución Si te das cuenta, en este problema el resultado es un número natural. Como en el planteamiento del problema se menciona “un cuarto de la manada”, y “la raíz cuadrada de esa manada”, el número de borregos debe ser un múltiplo de 4, como un cuadrado perfecto. Se inicia con una ecuación donde representa el número de borregos en la manada, el cual se sustituye por 4, para ver si es la solución. Un cuarto de la manada + El doble de la raíz cuadrada de la manada + 3 veces 5 camellos = Número de camellos en la manada
  • 24. Eje 2. Razonamiento lógico matemático Página 24 de 37 + √ + = ( ) + √ + 15 = 4 1 + 4 + 15 = 4 20 4 Si observas el proceso, 4 no es la solución, por lo que se intenta con el siguiente número perfecto, que es múltiplo de 4. ( ) √ Observas que 16 tampoco es la solución al problema, así que se utiliza el siguiente número cuadrado perfecto, y que es múltiplo de 4. ( ) √ Aquí se cumple la igualdad y se encuentra el resultado al problema. La ecuación permite verificar el resultado. 5. Elaboración de un boceto Planteamiento: La copa y el botón
  • 25. Eje 2. Razonamiento lógico matemático Página 25 de 37 De la siguiente figura, y moviendo solamente dos palillos, deja el botón fuera de la copa. No puedes mover el botón. La copa puede quedar en cualquier orientación, pero debe mantenerse formada. Solución Para solucionar este tipo de problemas, debes realizar procesos y dibujarlos. Para profundizar un poco más sobre la resolución de problemas, a través de la creatividad y el juego, te invitamos a consultar el siguiente vínculo electrónico, donde se muestran más ejemplos de razonamiento: Tomado de: Lerdo, I.N. (2011). Juegos de todo el mundo: juegos con cerillas y palillos [Museo del juego] Recuperado de: http://museodeljuego.org/wp-content/ uploads/contenidos_0000001237_docu1.pdf Actividad 2. Ingenio lógico matemático Propósito
  • 26. Eje 2. Razonamiento lógico matemático Página 26 de 37 Resolver problemas matemáticos usando las estructuras del razonamiento lógico- matemático. Descripción: Con esta actividad podrás evaluar tus habilidades utilizando algunos métodos revisados durante esta unidad para la resolución de problemas lógico-matemáticos. Indicaciones: 1. Regresa al aula y busca la Actividad 2. Ingenio lógico matemático, en la lista de tareas. Una vez que la identifiques, da clic para acceder al cuestionario. 2. Responde el cuestionario, y cuando termines, revisa la realimentación. 3. El cuestionario te permitirá solamente dos intentos. Criterios de evaluación: El cuestionario tiene un valor del 10% sobre la evaluación final del curso. Lineamientos de entrega: Deberás responder el cuestionario en su totalidad. Recursos: Cuestionario: Ingenio lógico matemático Para responder el cuestionario interactivo debe ingresar al aula virtual Constante de Kaprekar Como podemos ver, cada uno de los problemas que acabas de resolver tiene particularidades que necesitan diversos métodos de solución. Ahora te invitamos a revisar la siguiente reflexión que aporta un conocimiento muy útil en diferentes momentos de tu vida estudiantil. ¿Alguna vez has escuchado de la constante de Kaprekar? Si no la conoces, realiza la siguiente actividad para identificarla. Selecciona un número de tres dígitos diferentes. Primero, ordénalos de manera descendente, y resta los mismos tres dígitos, pero ahora ordenados de manera ascendente. Por ejemplo, selecciona los dígitos 4, 6 y 9, de modo que, en primera Observa que obtuviste 495. Repitiendo el proceso, vuelves a obtener el número 495. A este número se le conoce como la constante de Kaprekar, en la cual el resultado siempre será 495, si el proceso se aplica a cantidades de tres dígitos. Te invitamos a realizar el mismo proceso de Kaprekar a un número de dos dígitos
  • 27. Eje 2. Razonamiento lógico matemático Página 27 de 37 Cierre de la unidad Hasta ahora nos hemos dado cuenta de que la resolución de problemas no se aplica sólo a las matemáticas, sino que se amplían en otras ramas de la educación universitaria. Además, cuando se presenta un problema, algunas veces lo resolvemos por medio de la intuición y su resultado nos convence, pero existen otros que necesitan más de una predicción inductiva; necesitan estructuras, métodos, técnicas y demás herramientas que permiten llegar a su solución. Te exhortamos a revisar la última unidad de este eje, donde fortalecerás todo lo aprendido hasta el momento. Fuentes de consulta Lerdo, I.N. (2011). Juegos de todo el mundo: juegos con cerillas y palillos [Museo del juego]. Recuperado de http://museodeljuego.org/wp- content/uploads/contenidos_0000001237_docu1.pdf Miller, C. D., Heeren, V. E., y Hornsby, J. (2013). Matemática: Razonamiento y aplicaciones. 12ª Edición. México: Editorial Pearson Educación. instancia, obtienes 964. 964 954 - 469 - 459 495 495 diferentes (interpreta 9 como 09, si es necesario) y compara los resultados. ¿Qué parece ser verdad? Realiza lo mismo, pero, en lugar de dos dígitos, utiliza cuatro dígitos ¿Qué conjetura se puede formar respecto a esta situación?
  • 28. Eje 2. Razonamiento lógico matemático Página 28 de 37 Unidad 3. Razonamiento lógico y abstracto Muchos de los ejercicios que hemos revisado en las dos unidades anteriores han sido para orientarte y proporcionarte métodos para la solución de problemas, métodos que te sirven para determinar procesos y técnicas. Los ejemplos tratados en esta unidad nos muestran situaciones relacionadas con el pensamiento creativo y a medida que los vayamos resolviendo, mejorará notablemente tu capacidad de razonamiento. Reflexionemos en lo siguiente: La forma de resolverlos es ir sacando conclusiones con un criterio lógico, sin hacer uso de conocimientos matemáticos o de lógica. Por su parte, el razonamiento abstracto se constituye por series de figuras, y debemos escoger cuál de las figuras es la que continúa; para ello, tenemos que notar ciertas características como el cambio de posición, rotación y analogías de las figuras. Para precisar, reforzar y continuar con el aprendizaje dentro de esta unidad, te recomendamos leer la siguiente presentación sobre ordenamiento jerárquico:
  • 29. Eje 2. Razonamiento lógico matemático Página 29 de 37
  • 30. Eje 2. Razonamiento lógico matemático Página 30 de 37
  • 31. Eje 2. Razonamiento lógico matemático Página 31 de 37
  • 32. Eje 2. Razonamiento lógico matemático Página 32 de 37 Para verificar a través de videos algunos procesos de solución, te sugerimos revisar los ejemplos en el siguiente par de vínculos electrónicos sobre razonamiento lógico y abstracto:
  • 33. Eje 2. Razonamiento lógico matemático Página 33 de 37 Zevallos, A. (2013). Razonamiento lógico 152 - verdades y mentiras [video]. Recuperado de https://www.youtube.com/watch?v=S_1AQM0LozE Zevallos, A. (2013). Analogías gráficas problema 201 - razonamiento abstracto [video]. Recuperado de https://www.youtube.com/watch?v=pKQ5t6n8vC4 Por último, te brindamos un documento donde revisarás diversos ejemplos y ejercicios sobre razonamiento lógico y abstracto, tomado de la siguiente referencia: Ayala, O. (s/f). Razonamiento. Recuperado de http://repositorio.utn.edu.ec/bitstream/123456789/1176/1/RAZONAMIENTO.pdf Después de que hemos tenido un acercamiento al razonamiento lógico y al razonamiento abstracto, te mostramos ciertos ejemplos que pueden ayudarte en la realización de la actividad de aprendizaje: 1. Razonamiento Lógico  Relación de tiempo  Ordenamiento lineal  Parentesco 2. Razonamiento abstracto Ahora veamos los siguientes ejemplos de cada uno de ellos. Relación de tiempo Si el ayer del pasado mañana del mañana de anteayer de mañana es jueves, ¿qué día fue ayer? Para solucionarlo, lo más conveniente es crear una recta numérica para representar los días.
  • 34. Eje 2. Razonamiento lógico matemático Página 34 de 37 Si el ayer: -1 Del pasado mañana: +2 Del mañana: +1 De anteayer: -2 De mañana: +1 Entonces: Del resultado se deduce que mañana (+1) es jueves, y hoy es miércoles; así que ayer fue martes. Ordenamiento lineal Jorge es mayor que Sandra y ella es menor que Fidel. Marco es mayor que Jorge y Fidel, y éste es menor que Jorge. ¿Cuál de los siguientes enunciados es verdadero? a) Fidel es mayor que Jorge y menor que Sandra b) Jorge es mayor que Sandra y Fidel c) Marco es menor que Jorge y mayor que Fidel Para resolver este problema, puedes relacionarlos de acuerdo a los enunciados: Por lo tanto, El enunciado verdadero es el de la opción b). Parentesco En un restaurante estaban presentes: un padre, una madre, un tío, una tía, un
  • 35. Eje 2. Razonamiento lógico matemático Página 35 de 37 hermano, una hermana, un sobrino, una sobrina y dos primos. Si cada uno consumió $350, ¿cuánto gastaron en total como mínimo? Solución: Analizando el problema, puedes determinar que cada integrante de la familia puede desempeñar diferentes papeles. Representado en un esquema, quedaría de la siguiente manera. Por consiguiente, estuvieron cuatro personas, así que ( ) Ejemplos de razonamiento abstracto 1.- ¿Cuál es la figura que sigue en la secuencia? Solución: Suprimiendo las puntas de la flechas, la respuesta correcta sería C). 2.- ¿Cuál es la figura que sigue en esta serie?
  • 36. Eje 2. Razonamiento lógico matemático Página 36 de 37 Solución: Si analizas el movimiento de las figuras, éstas van rotando 90°, por lo tanto, la solución es B). Actividad 3. Razonamiento abstracto Propósito: Aplicar el razonamiento abstracto para resolver problemas lógicos, deduciendo ciertas consecuencias de la situación planteada figuras. Descripción: En esta actividad tendrás oportunidad de verificar las habilidades adquiridas para la aplicación del razonamiento abstracto. Indicaciones: 1. Regresa al aula y busca la Actividad 3. Razonamiento abstracto, en la lista de tareas. Una vez que la identifiques, da clic para acceder al cuestionario. 2. Responde el cuestionario, y cuando termines, revisa la realimentación. 3. El cuestionario te permitirá solamente dos intentos. Criterios de evaluación: El cuestionario tiene un valor del 10% sobre la evaluación final del curso. Lineamientos de entrega: Deberás responder el cuestionario en su totalidad. Recursos:  Cuestionario: Razonamiento abstracto. Para responder el cuestionario interactivo ingresa al aula virtual Cierre de la unidad A través de esta unidad revisamos diferentes ejemplos que nos permitieron desarrollar el razonamiento lógico-matemático, crear estructuras, resolver problemas no tan comunes en una asignatura como las matemáticas pero que contienen fundamentos matemáticos. No se abordaron contenidos matemáticos de manera específica porque la principal intención es aportar herramientas fundamentales para la creación de textos, utilizando el análisis y la toma de decisiones. Deberás considerar estos elementos para los conocimientos que vas a adquirir en el futuro.
  • 37. Eje 2. Razonamiento lógico matemático Página 37 de 37 Fuentes de consulta Zevallos, A. (2013). Razonamiento lógico 152 - verdades y mentiras. [Archivo de video]. Recuperado de https://www.youtube.com/watch?v=S_1AQM0LozE Zevallos, A. (2013). Analogías gráficas problema 201 - razonamiento abstracto. [Archivo de video]. Recuperado de https://www.youtube.com/watch?v=pKQ5t6n8vC4 Ayala, O. (s/f). Razonamiento. Recuperado de: http://repositorio.utn.edu.ec/bitstream/123456789/1176/1/RAZONAMIENTO.pdf