LA RECTA NUMERICA ...sigamos practicando...
Los números naturales los podemos representar en una recta numérica
En el conjunto de números naturales se pueden establecer diferentes tipos de relaciones como por ejemplo >, <, =, ….  >  mayor que <  menor que =  igual que
En el gráfico anterior nos damos cuenta que  2  tiene como elemento sucesor  3   y como elemento antecesor  1  teniendo en cuenta que estamos estudiando el  conjunto de los naturales.   De esta manera podemos decir que el  único  elemento que no es sucesor de ninguno y que no tiene antecesor es el  0 .
También se podría afirmar que en una recta numérica todos los elementos que estén a la  derecha  de un elemento  x  son  mayores  que el y todos aquellos que estén a su  izquierda  son  menores.
0  y  1  están a la izquierda de  2,  razón por la cual se cumple:  0 < 2  1  <  2   Lo mismo para los de la derecha:  3  >  2  10 > 2   EJEMPLO
AHORA VEAMOS LA RECTA NUMÉRICA CON LOS NÚMEROS ENTEROS ENTEROS POSITIVOS  (NATURALES) NEGATIVOS RECORDEMOS....
Propiedades de la desigualdad: Un número es mayor cuando se encuentra más a la derecha que otro en la recta numérica: 0 -1 -2 -3 -4 derecha ...entonces   0      -4
Propiedades de la desigualdad: Un número es menor cuando se encuentra más a la izquierda que otro en la recta numérica: 0 -1 -2 -3 -4 izquierda ...entonces   -2     1 1
Números Simétricos Son una pareja de números que se encuentran a la misma distancia de una recta numérica, pero en diferente dirección partiendo del origen. |____|____|____|____|____|____|____|____| -4 0 +4 -4   y   +4   son simétricos
Propiedades de las Operaciones  de  Números Enteros -4 + 3  +5 + 3 -5 - 8 + 3   -10
Suma Conmutativa:   El orden de los sumandos no altera el resultado. No importa  la forma en que se agrupen los  sumandos, ya que siempre da el mismo  resultado. Elemento Neutro:   Todo número al que se le sume    el elemento neutro dará como  resultado el mismo número. El elemento neutro en la suma es  0
Reglas de signos de sumas y restas Cantidades con signos iguales.-  Se suman y se conserva el signo, ejemplo: -4 –3 = -7 suman mismo signo Cantidades con  signos diferentes.-  Se restan y se conserva  el signo del mayor,  ejemplo: -5 + 3 = -2 Signos  diferentes Se restan y se conserva el signo del mayor
Multiplicación El   orden de los factores  no altera el producto. Asociativa.-   No importa la forma en que se agrupen los factores, siempre dará el mismo producto. Distributiva.-   El producto de un factor con una suma o resta puede ser distribuido con el producto de los miembros de la suma o resta por el factor:  (b+c) = ab + ac (b-c) = ab - ac Elemento Neutro.-   Todo número multiplicado por uno da como resultado el mismo número. El elemento neutro en la multiplicación es  1
Reglas de signos de la multiplicación (+) (+) = + (-) (-) = + (+) (-) = - (-) (+) = - Para llevar a cabo la multiplicación de signos se tomará en cuenta la siguiente tabla

La recta numerica svs

  • 1.
    LA RECTA NUMERICA...sigamos practicando...
  • 2.
    Los números naturaleslos podemos representar en una recta numérica
  • 3.
    En el conjuntode números naturales se pueden establecer diferentes tipos de relaciones como por ejemplo >, <, =, …. > mayor que < menor que = igual que
  • 4.
    En el gráficoanterior nos damos cuenta que 2 tiene como elemento sucesor 3 y como elemento antecesor 1 teniendo en cuenta que estamos estudiando el conjunto de los naturales. De esta manera podemos decir que el único elemento que no es sucesor de ninguno y que no tiene antecesor es el 0 .
  • 5.
    También se podríaafirmar que en una recta numérica todos los elementos que estén a la derecha de un elemento x son mayores que el y todos aquellos que estén a su izquierda son menores.
  • 6.
    0 y 1 están a la izquierda de 2, razón por la cual se cumple: 0 < 2 1 < 2 Lo mismo para los de la derecha: 3 > 2 10 > 2 EJEMPLO
  • 7.
    AHORA VEAMOS LARECTA NUMÉRICA CON LOS NÚMEROS ENTEROS ENTEROS POSITIVOS (NATURALES) NEGATIVOS RECORDEMOS....
  • 8.
    Propiedades de ladesigualdad: Un número es mayor cuando se encuentra más a la derecha que otro en la recta numérica: 0 -1 -2 -3 -4 derecha ...entonces 0  -4
  • 9.
    Propiedades de ladesigualdad: Un número es menor cuando se encuentra más a la izquierda que otro en la recta numérica: 0 -1 -2 -3 -4 izquierda ...entonces -2  1 1
  • 10.
    Números Simétricos Sonuna pareja de números que se encuentran a la misma distancia de una recta numérica, pero en diferente dirección partiendo del origen. |____|____|____|____|____|____|____|____| -4 0 +4 -4 y +4 son simétricos
  • 11.
    Propiedades de lasOperaciones de Números Enteros -4 + 3 +5 + 3 -5 - 8 + 3 -10
  • 12.
    Suma Conmutativa: El orden de los sumandos no altera el resultado. No importa la forma en que se agrupen los sumandos, ya que siempre da el mismo resultado. Elemento Neutro: Todo número al que se le sume el elemento neutro dará como resultado el mismo número. El elemento neutro en la suma es 0
  • 13.
    Reglas de signosde sumas y restas Cantidades con signos iguales.- Se suman y se conserva el signo, ejemplo: -4 –3 = -7 suman mismo signo Cantidades con signos diferentes.- Se restan y se conserva el signo del mayor, ejemplo: -5 + 3 = -2 Signos diferentes Se restan y se conserva el signo del mayor
  • 14.
    Multiplicación El orden de los factores no altera el producto. Asociativa.- No importa la forma en que se agrupen los factores, siempre dará el mismo producto. Distributiva.- El producto de un factor con una suma o resta puede ser distribuido con el producto de los miembros de la suma o resta por el factor: (b+c) = ab + ac (b-c) = ab - ac Elemento Neutro.- Todo número multiplicado por uno da como resultado el mismo número. El elemento neutro en la multiplicación es 1
  • 15.
    Reglas de signosde la multiplicación (+) (+) = + (-) (-) = + (+) (-) = - (-) (+) = - Para llevar a cabo la multiplicación de signos se tomará en cuenta la siguiente tabla