SlideShare una empresa de Scribd logo
1 de 28
X  CONGRESO Logroño,  12 al 14 de mayo 2011 MATEMÁTICAS Y CÁNCER Esquema general Introducción al tema Modelos matemáticos de aplicación 1) Clásicos 2) Modernos Geometría fractal Teoría del caos Matemática genética y cáncer Conclusiones actualizadas
¿Qué se le puede pedir a un Modelo Matemático? Que represente la realidad, lo más fielmente posible. Para ello:   Buena elección del tipo de modelo. Correcto planteamiento. Adecuada formulación. Posibilidades de resolución. Aplicabilidad.   TIPOS DE MODELOS MATEMÁTICOS: Modelos determinísticos y estocásticos. Modelos continuos y discretos. Modelos matemáticos en tumores: a) Clásicos:  Exponencial, Logístico, de Von Bertalanffy, de    Gompertz …  (Hay muchos de ellos)   b) Actuales:  de Brú, de Murray.  (Otros)  Modelos de cantidad de células y modelos de ciclo celular. MATEMÁTICAS  Y  CÁNCER Las Variables Tiempo  Espacio
CRECIMIENTO  DE  POBLACIONES 1 – MALTHUS   (1798)   Curva exponencial 2 – VERHULST   (1838)   Curva logística 3 – VOLTERRA – LOTKA   (1925)   “De las dos especies” EJPLO DE APLICACIONES:  Crecimiento y propagación de tumores, Id.  de bacterias, Estudios genéticos varios, Inmunología, etc. Surgieron estos estudios con motivo del tema de la reproducción de los animales  (Fibonacci, “ La isla de los conejos ”, S-XIII) t y Curva exponencial Curva logística Capacidad  de carga y t K
MODELO  EXPONENCIAL t C Quimio:  Si destruye el 95 % de células por sesión,  Precisan  7  sesiones para que quede una célula en un tumor de 10  células inicialmente.   ( Condiciones determinadas) Aquí     sería negativo e igual a  – 3 . 10 lo que implica:   Tasa de crecimiento,     Si tiempo duplicación = 3 meses,   podemos escribir:
MODELO  LOGÍSTICO EJPLO.-  Tomando un  a  = 0.08 / mes  y un  b  = 0.003 ,  K  = 26.7   por tanto.  Entonces el tiempo de  duplicación  sería: El máximo de  [1]  para  t  =   ,  sería  K  = 26.7  veces el volumen del tumor detectado en el tiempo  t  = 1.  ( T. cerebrales, p. ej.) lo que implica:   t  = 9.16  meses [1]  Con  K = a / b (Elemento de freno) y t a  = tasa de crecimiento b   = coeficiente de densidad K
MODELO  DE  Von  BERTALANFFY Aquí conviene calcular  y   en función de  t   ,  mediante la construcción de tablas.   Para  a = 0.25/mes  y  b = 0.1, el tiempo de duplicación  resulta ser igual a  16 meses. El máximo volumen del tumor, para  t =   ,  sería  igual a  1 / b. (El factor de “freno” es ahora  b y ) t y
MODELO  DE  GOMPERTZ (Cuando  f  (    )  decrece exponencialmente con el tiempo, tenemos la clásica función de Gompertz.)   Siendo   k  =  e a   t y Familia de distribuciones de Gompertz: con     constante o no .
Transformación Angiogénesis Motilidad e invasión Embolismo   circul . Adherencia Detención en  lecho  capilar Extravasación en parenquima Reacción  al entorno Proliferación tumoral y  angiogénesis Trasporte Agregación  cel. Metástasis Metástasis de metástasis Capilares, vénulas, etc Extensión  espacial                                                                                                                                                      MODELO  DE  METÁSTASIS
Se conocen  más de un millar de modelos matemáticos para el crecimiento  en número de las células cancerosas, lo que puede significar que: a) Hay muchas variedades de tumores. b) Tienen defectos casi todos los modelos. c) Varía el tipo de modelo en los diferentes estadíos del tumor. d) Es difícil la determinación de los parámetros. e) Intervienen otros factores propios del paciente.  Etc. No todas las ecuaciones diferenciales se pueden solucionar directamente, siendo preciso recurrir a métodos numéricos en muchas ocasiones. Hasta ahora sólo hemos tenido en cuenta la evolución temporal de los tumores,  pero no su difusión espacial. (Crecimiento, metástasis) Veremos más adelante otros tipos de modelos que intentan obviar estas dificultades.   (James D. Murray, el propuesto por Antonio Brú, etc). CRÍTICA A LO HASTA AHORA DICHO
Tumor de 8    3    2.5  cm.  Se extirpa, pero quedan:  3 cc  locales y  15   metástasis de  0.75 cc   en promedio (subclínicas). Volumen de las metástasis  =  15    0.75 =   11.25 cc.  De acuerdo con con lo dicho, proceden los siguientes cálculos: (Modelo Exponencial simple) EJEMPLO  (1) Vol. Inic. del tumor  :  (Aquí = 31.4 cc.) Tiempos de duplicación:   Tumor = 3 meses ;  Metas = 2 meses.   O sea: Suponiendo que  1 cc   contiene  10 9 células tumorales, tenemos: Número de células del tumor  = 3    10  9 Núm. células  de las metas  = 11.25    10 9
Si una sesión de “quimio” deja “vivas” al  5 %   de células del tumor  y al  2 %   de células de las metástasis,   resultará: Con lo que podemos confeccionar la siguiente tabla: EJEMPLO  (2) Núm. de células tumorales tras la 1ª sesión de quimio: 0.15    10 9 =  15    10 7 Núm. de células de las metas tras la 1ª sesión de quimio: 9 0.225    10 = 22.5    10  7 Núm. de células tumorales 14 días después: Núm. de células de las metas 14 días después: Etc. N t 0 14
NOTA.- Es de destacar el componente aleatorio en las últimas sesiones. Tras la sesión  de quimio Núm. de  células del  tumor Núm. de células  de las metas 14 días después: Núm. células Núm. de células  del tumor de las metas 1 ª 15   10  7 22.5   10  7 16.8   10  7 26.8   10  7 2 ª 84   10  5 54   10  5 94.5   10  5 63.6   10  5 3 ª 4.72   10  5 1.27   10  5 5.30   10  5 1.52   10  5 4 ª 26.5   10  3 3   10  3 29.8   10  3 3.6   10  3 5 ª  14.9   10  2 72 16.7   10  2 86 6 ª 83.5 1.71 93.7 2.04 7 ª 4.7 0.04 5.3 0.05 8 ª 0.26 0.001 0.30 0.001 9 ª 0.01 0.00002 0.02 0.00003 1 0 ª 0.0008 0 0.0009 0 EJEMPLO  (3)
Más aun:   ¿Cuando empezó el tumor del ejemplo? Resolviendo la ecuación , resulta :  t  = 104.63 meses =  8.72  años.   Otra pregunta:  ¿Cuándo se hizo “clínico” el tumor? ¡ Los comentarios surgen solos ! (Podemos intentar, ciertamente, modificar el modelo) ? ? EJEMPLO  (4) Recordemos: Se hace clínico cuando su volumen  es  1 cc. (=  células) Al principio,   Como    = 0.231  y  En ese caso escribimos:   que resuelta da: t = 89.71 meses = 7.5 años. [¿Gompertz?]
EJEMPLO  (final) NOTA 1.-  El mismo tumor, con un modelo Gompertz de crecimiento, con parámetro    de 0.05 al mes, habría comenzado 8 meses antes de su diag- nóstico, ¡Y no, hace más de 8 años!   NOTA 3.-  En el nuevo contexto, tras la 8 ª sesión de quimioterapia ya no  quedaría activa ninguna célula del tumor (parecidamente al ejemplo).   NOTA 4.-   Acerca de las metástasis no estamos en condiciones de estimar en qué momento se iniciaron, en el caso de suponer que el modelo sigue la distribución de Gompertz. NOTA 5.-  Los modelos matemáticos, si son acertados y se pueden estimar sus parámetros con la suficiente aproximación, constituyen una valiosa  ayuda para el conocimiento de la dinámica de las células tumorales. NOTA 2.-  Se evidencia la conveniencia de cambiar de modelo o de utilizar simultánea o sucesivamente, en este caso y en otros, dos o varios modelos diferentes.
DINÁMICA  UNIVERSAL  DE  CRECIMIENTO TUMORAL   (Antonio  Brú & al.) FUNDAMENTOS: - MBE (Molecular beam epitaxy) - Crecimiento en superficie (interface) - Dimensiones fractales del borde - Similitud de tumor y metástasis Scaling  analysis x   = extensión del tumor t  = tiempo de desarrollo K   = coef. de distrib. en superficie F  = tasa de crecimiento    = “ruido aleatorio”   CRÍTICA
Parámetros:    = tasa de crecimiento D  = coef. difusión espacial Valores: c ( x,t )  =Núm. células neoplásicas en la posición  x   y en el tiempo  t . . . MODELO  DE  J. D. MURRAY (1) Solución :   N   = Núm cél. tum en  t  =  0 r  = radio tumoral medio 0 Fase de establecimiento ( Te ):  tiempo entre inicio y detección del tumor. Se cumple:   lo que implica:   con Tiempo de supervivencia ( Ts  ):
1  –  Soporte de conocimientos médicos. 2  –  Modelos matemáticos básicos. 3  –  Diseminación tumoral “in vitro”. 4  –  Diseminación en animales de experimentación. 5  –  Diseminación en seres humanos. 6  –  Ensayo de diversos tipos de tratamientos. 7  –  Caso particular de la cirugía. 8  –  Recurrencia de tumores. 9  –  Caso de tejidos heterogéneos. 10  –  Modelos aplicables a la quimioterapia. 11  –  Caso de policlonalidad celular.  (Un verdadero modelo de diseño experimental) Swanson, K.R; Alvord Jr, E.C; Woodward, D.E; Cook, J; Tracqui, P; Cruywagen, G.C; Bridge, C; etc. . . . MODELO  DE  J. D. MURRAY (2) ASPECTOS A CONSIDERAR  (“Pasos”)
Propagación espacial MODELO  DE  J. D. MURRAY (3) 1 – Paseo aleatorio Prob.  de alcanzar el punto  m  tras  n  pasos  =  (Distrib. normal) 2 – Ecuación de ondas D  = coef. difusión C  = núm. células Cuya solución es: Q  = Partículas por unidad de área, con  x  = 0  y  t  = 0. (Eqs. en derivadas parciales) 3 – Ecuación de Fisher-Kolmogorov ( Forma más simple ) Cuya solución es: u   = concentración;  c   = Velocidad de  propagación de la onda viajera;  a ,  A  = constantes.  (Deriv. parciales) P m
¿ Qué es un fractal ?   (Mandelbrot) EL FRACTAL DE KOCH : Estructuras fractales en el organismo: Ramif. de vasos Morfol. neuronas Ramif. bronquiales Etc. Otras: Hojas de árboles Helechos Cortezas de árbol Contornos geográficos Etc. FRACTALES Propiedades:  Longitud infinita, Área finita, Invariancia de escala.
Un Fractal Geométrico: el triángulo de Sierpinski MEDIDA del área no blanqueada = CERO
UN FRACTAL GEOMÉTRICO CARACTERÍSTICO   (Juliá)
El contorno de Asturias La medida de un rectángulo ¿Qué longitud tiene? Box counting DIMENSIÓN (D): (Hausdorff) N(a) = núm círcul. a = Radio círculos N(a)    a   -  D Dim. fractal KOCH:
X = ln  ( radio ) Y = ln   ( número ) Y =  a ’ +  b  X a’ = ln ( a ) a ’ = 6. 4186 b  = - 1. 0768 Recta de regresión X Y De donde, haciendo     = 2 Km: siendo   D = 1. 0768 ,  resulta: radio de  a ( Escalamiento ) EL MÉTODO “Box counting”  ( Perímetro de Asturias ) 1.6094 4.6728 2.0149 4.2341 2.3026 3.9572 2.5649 3.6889 3.2189 2.9444 3.9120 2.1972 ln   radio ln   núm. Fórmula de Richardson para la longitud:
TEORÍA  DEL  CAOS  (1) 1 – El experimento de Edward Lorenz  (1961) 0.506127 contra 0.506 Predicción del tiempo. El efecto mariposa. Precios del algodón (Mandelbrot). 2 – El atractor de Lorenz
TEORÍA  DEL  CAOS  (2) 3 – El hallazgo de Robert May   (Poblaciones biológicas) al variar el valor de   r ... Número de Feigenbaum: 4,669 4 – Otros: El latido cardíaco Fractales y caos, etc Relatividad, mecánica  cuántica y caos (S-XX). Período = 2 Período = 4 Caos
MATEMÁTICA  GENÉTICA 1 –  Caminos aleatorios y ADN Purinas: Adenina, Guanina. Pirimidinas: Citosina, Timina. Regla Purina-pirimidina: Pirimidina: arriba, Purina: abajo. 3 –  Papel posible del caos. 2 –  Perfil fractal   (Paisajes) Rugosidad unida a NO codificación. a) Gran parte de zonas que no codifican. b) Sólo las zonas que codifican. c) Secuencia de bacteriófago: sólo zonas que codifican.
1.- Las Matemáticas deben entrar a formar parte de los equipos  multidisciplinares que se ocupan de Investigación Básica en  Ciencias de la Salud. 2.- Hoy día todavía no pueden resolver las Matemáticas los  problemas que plantean el cáncer y otras dolencias, pero  ya suponen una ayuda notable. 3.- Así como la Bioquímica  ha tenido  un papel fundamental  en Medicina, es ya el tiempo en que las Matemáticas han de asumir un protagonismo básico en Ciencias de la Vida. 4.- La investigación biomatemática en determinadas disciplinas,  …. como la genética, por ejemplo, requiere que el investigador  …. posea un conocimiento notable de ambas materias. CONCLUYENDO ...
X  CONGRESO Logroño,  12 al 14 de mayo 2011 m i g u e l . a n d e r i z @ u n a v a r r a . e s MATEMÁTICAS Y CÁNCER Muchas gracias por su atención

Más contenido relacionado

La actualidad más candente

Ecuacion de la recta pendiente
Ecuacion de la recta pendienteEcuacion de la recta pendiente
Ecuacion de la recta pendienteJulian Andres
 
geometría plana calvache
geometría plana calvachegeometría plana calvache
geometría plana calvacheKevin Veloz
 
Sucesiones, sumatorias y progresiones
Sucesiones, sumatorias y progresionesSucesiones, sumatorias y progresiones
Sucesiones, sumatorias y progresionesRosa Rondón
 
Solucionario Geometría Plana y del Espacio Calvache
Solucionario Geometría Plana y del Espacio Calvache Solucionario Geometría Plana y del Espacio Calvache
Solucionario Geometría Plana y del Espacio Calvache Ian Paucar Montes
 
El calculo integral en la biología
El calculo integral en la biologíaEl calculo integral en la biología
El calculo integral en la biologíaEmirAnguasVazquez
 
Problemas aplicando ley del seno y ley del coseno - Matemática
Problemas aplicando ley del seno y ley del coseno - MatemáticaProblemas aplicando ley del seno y ley del coseno - Matemática
Problemas aplicando ley del seno y ley del coseno - MatemáticaMatemática Básica
 
Formulas de estadistica y probabilidades
Formulas de estadistica y probabilidadesFormulas de estadistica y probabilidades
Formulas de estadistica y probabilidadesederelreyrata
 
Fìsica-vectorial-2-vallejo-zambrano-pdf
Fìsica-vectorial-2-vallejo-zambrano-pdfFìsica-vectorial-2-vallejo-zambrano-pdf
Fìsica-vectorial-2-vallejo-zambrano-pdfLuis Puetate
 
2. congruencia de_triangulos_1
2. congruencia de_triangulos_12. congruencia de_triangulos_1
2. congruencia de_triangulos_1Jesus Guerra
 
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un IngenieroAplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingenieronueva-era
 
Cálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias BiológicasCálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias BiológicasJulio Samanamud
 
Leyes de exponentes - Teoría y practica
Leyes de exponentes - Teoría y practicaLeyes de exponentes - Teoría y practica
Leyes de exponentes - Teoría y practicaMartin Huamán Pazos
 
Diagramas de arbol
Diagramas de arbolDiagramas de arbol
Diagramas de arbolALANIS
 
Fórmulas trigonometricas
Fórmulas trigonometricasFórmulas trigonometricas
Fórmulas trigonometricasDRJAIMEBRAVO
 
3 medidas de tendencia central y de dispersion
3   medidas de tendencia central y de dispersion3   medidas de tendencia central y de dispersion
3 medidas de tendencia central y de dispersionrbarriosm
 

La actualidad más candente (20)

Ecuacion de la recta pendiente
Ecuacion de la recta pendienteEcuacion de la recta pendiente
Ecuacion de la recta pendiente
 
geometría plana calvache
geometría plana calvachegeometría plana calvache
geometría plana calvache
 
Sucesiones, sumatorias y progresiones
Sucesiones, sumatorias y progresionesSucesiones, sumatorias y progresiones
Sucesiones, sumatorias y progresiones
 
Solucionario Geometría Plana y del Espacio Calvache
Solucionario Geometría Plana y del Espacio Calvache Solucionario Geometría Plana y del Espacio Calvache
Solucionario Geometría Plana y del Espacio Calvache
 
El calculo integral en la biología
El calculo integral en la biologíaEl calculo integral en la biología
El calculo integral en la biología
 
Problemas aplicando ley del seno y ley del coseno - Matemática
Problemas aplicando ley del seno y ley del coseno - MatemáticaProblemas aplicando ley del seno y ley del coseno - Matemática
Problemas aplicando ley del seno y ley del coseno - Matemática
 
Genetica
GeneticaGenetica
Genetica
 
Formulas de estadistica y probabilidades
Formulas de estadistica y probabilidadesFormulas de estadistica y probabilidades
Formulas de estadistica y probabilidades
 
Fìsica-vectorial-2-vallejo-zambrano-pdf
Fìsica-vectorial-2-vallejo-zambrano-pdfFìsica-vectorial-2-vallejo-zambrano-pdf
Fìsica-vectorial-2-vallejo-zambrano-pdf
 
Criterio de semejanza de triangulos
Criterio de semejanza de triangulosCriterio de semejanza de triangulos
Criterio de semejanza de triangulos
 
2. congruencia de_triangulos_1
2. congruencia de_triangulos_12. congruencia de_triangulos_1
2. congruencia de_triangulos_1
 
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un IngenieroAplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
 
Cálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias BiológicasCálculo Integral en las Ciencias Biológicas
Cálculo Integral en las Ciencias Biológicas
 
Leyes de exponentes - Teoría y practica
Leyes de exponentes - Teoría y practicaLeyes de exponentes - Teoría y practica
Leyes de exponentes - Teoría y practica
 
Números irracionales
Números irracionalesNúmeros irracionales
Números irracionales
 
Diagramas de arbol
Diagramas de arbolDiagramas de arbol
Diagramas de arbol
 
Fórmulas trigonometricas
Fórmulas trigonometricasFórmulas trigonometricas
Fórmulas trigonometricas
 
Permutaciones
PermutacionesPermutaciones
Permutaciones
 
3 medidas de tendencia central y de dispersion
3   medidas de tendencia central y de dispersion3   medidas de tendencia central y de dispersion
3 medidas de tendencia central y de dispersion
 
Aplicaciones de limites.continuidad
Aplicaciones de limites.continuidadAplicaciones de limites.continuidad
Aplicaciones de limites.continuidad
 

Similar a Matemáticas y Cáncer

Dosis media de radiación de un examen estándar en la cabeza en 250 sistemas ...
Dosis media de radiación de un examen  estándar en la cabeza en 250 sistemas ...Dosis media de radiación de un examen  estándar en la cabeza en 250 sistemas ...
Dosis media de radiación de un examen estándar en la cabeza en 250 sistemas ...Marco Antonio
 
Tomosíntesis de Mama
Tomosíntesis de MamaTomosíntesis de Mama
Tomosíntesis de MamaDanissalg
 
Distribuciones
DistribucionesDistribuciones
Distribucionespathend
 
Trabajo final segunda unidad
Trabajo final segunda unidad Trabajo final segunda unidad
Trabajo final segunda unidad anakaren090292
 
Física y química 3º ESO: Tema I: El método de la ciencia
Física y química   3º ESO: Tema I: El método de la cienciaFísica y química   3º ESO: Tema I: El método de la ciencia
Física y química 3º ESO: Tema I: El método de la cienciaMaggicMissile
 
Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...
Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...
Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...Carlos M Martínez M
 
Crecimiento gomperziano.pptx
Crecimiento gomperziano.pptxCrecimiento gomperziano.pptx
Crecimiento gomperziano.pptxCelindaCondori2
 
Aborde por TC de Metástasis por Carcinoma de mama
Aborde por TC de Metástasis por Carcinoma de mamaAborde por TC de Metástasis por Carcinoma de mama
Aborde por TC de Metástasis por Carcinoma de mamaDiego Villavicencio
 
23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.
23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.
23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.Gaspar Alberto Motta Ramírez
 
ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...
ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...
ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...Aline Chaves
 
Mundo complejo (este es el bueno, hehe)
Mundo complejo (este es el bueno, hehe)Mundo complejo (este es el bueno, hehe)
Mundo complejo (este es el bueno, hehe)Bachillerato A
 
5. microscopia iv_volumen_2014_ii (1)
5. microscopia iv_volumen_2014_ii (1)5. microscopia iv_volumen_2014_ii (1)
5. microscopia iv_volumen_2014_ii (1)katherinemp97
 
Notacion cientifica
Notacion cientificaNotacion cientifica
Notacion cientificaHuancamonica
 

Similar a Matemáticas y Cáncer (20)

Tomografia axial computarizada
Tomografia axial computarizadaTomografia axial computarizada
Tomografia axial computarizada
 
Dosis media de radiación de un examen estándar en la cabeza en 250 sistemas ...
Dosis media de radiación de un examen  estándar en la cabeza en 250 sistemas ...Dosis media de radiación de un examen  estándar en la cabeza en 250 sistemas ...
Dosis media de radiación de un examen estándar en la cabeza en 250 sistemas ...
 
Física de la radiología.
Física de la radiología.Física de la radiología.
Física de la radiología.
 
Tomosíntesis de Mama
Tomosíntesis de MamaTomosíntesis de Mama
Tomosíntesis de Mama
 
Distribuciones
DistribucionesDistribuciones
Distribuciones
 
Trabajo
TrabajoTrabajo
Trabajo
 
Trabajo final segunda unidad
Trabajo final segunda unidad Trabajo final segunda unidad
Trabajo final segunda unidad
 
Física y química 3º ESO: Tema I: El método de la ciencia
Física y química   3º ESO: Tema I: El método de la cienciaFísica y química   3º ESO: Tema I: El método de la ciencia
Física y química 3º ESO: Tema I: El método de la ciencia
 
Dca y bca
Dca y bcaDca y bca
Dca y bca
 
Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...
Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...
Pruebas no paramétricas para comparar curvas de supervivencia de dos grupos q...
 
Crecimiento gomperziano.pptx
Crecimiento gomperziano.pptxCrecimiento gomperziano.pptx
Crecimiento gomperziano.pptx
 
Aborde por TC de Metástasis por Carcinoma de mama
Aborde por TC de Metástasis por Carcinoma de mamaAborde por TC de Metástasis por Carcinoma de mama
Aborde por TC de Metástasis por Carcinoma de mama
 
23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.
23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.
23 Mar. 2021 TC Tx IPN Reconocimiento de lo básico para el médico general.
 
ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...
ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...
ASTROCITOMAS: sus estadíos, especificaciones diagnósticas y tratamientos actu...
 
Mundo complejo (este es el bueno, hehe)
Mundo complejo (este es el bueno, hehe)Mundo complejo (este es el bueno, hehe)
Mundo complejo (este es el bueno, hehe)
 
Tc
Tc Tc
Tc
 
5. microscopia iv_volumen_2014_ii (1)
5. microscopia iv_volumen_2014_ii (1)5. microscopia iv_volumen_2014_ii (1)
5. microscopia iv_volumen_2014_ii (1)
 
Edo u-2
Edo u-2Edo u-2
Edo u-2
 
Cb06 saucedo daney (1)
Cb06 saucedo daney (1)Cb06 saucedo daney (1)
Cb06 saucedo daney (1)
 
Notacion cientifica
Notacion cientificaNotacion cientifica
Notacion cientifica
 

Más de Medint81

Los internistas en los servicios quirúrgicos: Unidad de cadera
Los internistas en los servicios quirúrgicos: Unidad de caderaLos internistas en los servicios quirúrgicos: Unidad de cadera
Los internistas en los servicios quirúrgicos: Unidad de caderaMedint81
 
Hiponatremia asociada a SIADH
Hiponatremia asociada a SIADHHiponatremia asociada a SIADH
Hiponatremia asociada a SIADHMedint81
 
¿Para qué sirve un internista en un servicio quirúrgico?
¿Para qué sirve un internista en un servicio quirúrgico?¿Para qué sirve un internista en un servicio quirúrgico?
¿Para qué sirve un internista en un servicio quirúrgico?Medint81
 
Los internistas en los servicios quirúrgicos
Los internistas en los servicios quirúrgicosLos internistas en los servicios quirúrgicos
Los internistas en los servicios quirúrgicosMedint81
 
Caso logrono
Caso logronoCaso logrono
Caso logronoMedint81
 
Caso galdakao
Caso galdakaoCaso galdakao
Caso galdakaoMedint81
 
Caso complejo-hospitalario-navarra
Caso complejo-hospitalario-navarraCaso complejo-hospitalario-navarra
Caso complejo-hospitalario-navarraMedint81
 
C txagorritxu
C txagorritxuC txagorritxu
C txagorritxuMedint81
 
C hu-lozano-blesa-zaragoza
C hu-lozano-blesa-zaragozaC hu-lozano-blesa-zaragoza
C hu-lozano-blesa-zaragozaMedint81
 
C donostia
C donostiaC donostia
C donostiaMedint81
 
Caso. galdakao
Caso. galdakaoCaso. galdakao
Caso. galdakaoMedint81
 
Caso complejo hospitalario navarra
Caso complejo hospitalario navarraCaso complejo hospitalario navarra
Caso complejo hospitalario navarraMedint81
 
C.txagorritxu
C.txagorritxuC.txagorritxu
C.txagorritxuMedint81
 
C. hu lozano blesa zaragoza
C. hu lozano blesa zaragozaC. hu lozano blesa zaragoza
C. hu lozano blesa zaragozaMedint81
 
C. donostia
C. donostiaC. donostia
C. donostiaMedint81
 
Caso Clínico Logroño
Caso Clínico LogroñoCaso Clínico Logroño
Caso Clínico LogroñoMedint81
 

Más de Medint81 (20)

Los internistas en los servicios quirúrgicos: Unidad de cadera
Los internistas en los servicios quirúrgicos: Unidad de caderaLos internistas en los servicios quirúrgicos: Unidad de cadera
Los internistas en los servicios quirúrgicos: Unidad de cadera
 
Hiponatremia asociada a SIADH
Hiponatremia asociada a SIADHHiponatremia asociada a SIADH
Hiponatremia asociada a SIADH
 
¿Para qué sirve un internista en un servicio quirúrgico?
¿Para qué sirve un internista en un servicio quirúrgico?¿Para qué sirve un internista en un servicio quirúrgico?
¿Para qué sirve un internista en un servicio quirúrgico?
 
Los internistas en los servicios quirúrgicos
Los internistas en los servicios quirúrgicosLos internistas en los servicios quirúrgicos
Los internistas en los servicios quirúrgicos
 
Caso logrono
Caso logronoCaso logrono
Caso logrono
 
Caso galdakao
Caso galdakaoCaso galdakao
Caso galdakao
 
Caso complejo-hospitalario-navarra
Caso complejo-hospitalario-navarraCaso complejo-hospitalario-navarra
Caso complejo-hospitalario-navarra
 
C txagorritxu
C txagorritxuC txagorritxu
C txagorritxu
 
C teruel
C teruelC teruel
C teruel
 
C huesca
C huescaC huesca
C huesca
 
C hu-lozano-blesa-zaragoza
C hu-lozano-blesa-zaragozaC hu-lozano-blesa-zaragoza
C hu-lozano-blesa-zaragoza
 
C donostia
C donostiaC donostia
C donostia
 
Caso. galdakao
Caso. galdakaoCaso. galdakao
Caso. galdakao
 
Caso complejo hospitalario navarra
Caso complejo hospitalario navarraCaso complejo hospitalario navarra
Caso complejo hospitalario navarra
 
C.txagorritxu
C.txagorritxuC.txagorritxu
C.txagorritxu
 
C. teruel
C. teruelC. teruel
C. teruel
 
C. huesca
C. huescaC. huesca
C. huesca
 
C. hu lozano blesa zaragoza
C. hu lozano blesa zaragozaC. hu lozano blesa zaragoza
C. hu lozano blesa zaragoza
 
C. donostia
C. donostiaC. donostia
C. donostia
 
Caso Clínico Logroño
Caso Clínico LogroñoCaso Clínico Logroño
Caso Clínico Logroño
 

Último

Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdftaniacgcclassroom
 
21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf
21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf
21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdfHANNIBALRAMOS
 
Lesiones en el pie--Traumatología...pptx
Lesiones en el pie--Traumatología...pptxLesiones en el pie--Traumatología...pptx
Lesiones en el pie--Traumatología...pptx Estefa RM9
 
amenaza de parto pretermino univer 2024.pptx
amenaza de parto pretermino univer 2024.pptxamenaza de parto pretermino univer 2024.pptx
amenaza de parto pretermino univer 2024.pptxJusal Palomino Galindo
 
Clase 13 Artrologia Cintura Escapular 2024.pdf
Clase 13 Artrologia Cintura Escapular 2024.pdfClase 13 Artrologia Cintura Escapular 2024.pdf
Clase 13 Artrologia Cintura Escapular 2024.pdfgarrotamara01
 
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfSISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfTruGaCshirley
 
Psicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdfPsicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdfdelvallepadrob
 
Mapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptxMapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptxJhonDarwinSnchezVsqu1
 
LA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.pptLA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.pptSyayna
 
(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf
(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf
(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdfUDMAFyC SECTOR ZARAGOZA II
 
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracionSEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracionDrRenEduardoSnchezHe
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICAVeronica Martínez Zerón
 
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...MariaEspinoza601814
 
atencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.pptatencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.pptrosi339302
 
NERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSO
NERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSONERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSO
NERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSOEPICRISISHQN1
 
Posiciones anatomicas basicas enfermeria
Posiciones anatomicas basicas enfermeriaPosiciones anatomicas basicas enfermeria
Posiciones anatomicas basicas enfermeriaKarymeScarlettAguila
 
Torax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxTorax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxWillianEduardoMascar
 
Plan de Desparasitacion 27.03.2024 minsa.pptx
Plan de Desparasitacion 27.03.2024 minsa.pptxPlan de Desparasitacion 27.03.2024 minsa.pptx
Plan de Desparasitacion 27.03.2024 minsa.pptxOrlandoApazagomez1
 

Último (20)

Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdf
 
21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf
21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf
21542401-Historia-Natural-Del-Infarto-Agudo-de-Miocardio.pdf
 
Lesiones en el pie--Traumatología...pptx
Lesiones en el pie--Traumatología...pptxLesiones en el pie--Traumatología...pptx
Lesiones en el pie--Traumatología...pptx
 
amenaza de parto pretermino univer 2024.pptx
amenaza de parto pretermino univer 2024.pptxamenaza de parto pretermino univer 2024.pptx
amenaza de parto pretermino univer 2024.pptx
 
Clase 13 Artrologia Cintura Escapular 2024.pdf
Clase 13 Artrologia Cintura Escapular 2024.pdfClase 13 Artrologia Cintura Escapular 2024.pdf
Clase 13 Artrologia Cintura Escapular 2024.pdf
 
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfSISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
 
Psicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdfPsicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdf
 
Mapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptxMapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptx
 
LA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.pptLA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
 
(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf
(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf
(2024-04-17) TRASTORNODISFORICOPREMENSTRUAL (ppt).pdf
 
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracionSEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
 
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
 
atencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.pptatencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.ppt
 
NERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSO
NERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSONERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSO
NERVIO OLFATORIO. PARES CRANEALES. SISTEMA NERVIOSO
 
(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf
(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf
(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf
 
(2024-04-17) ULCERADEMARTORELL (ppt).pdf
(2024-04-17) ULCERADEMARTORELL (ppt).pdf(2024-04-17) ULCERADEMARTORELL (ppt).pdf
(2024-04-17) ULCERADEMARTORELL (ppt).pdf
 
Posiciones anatomicas basicas enfermeria
Posiciones anatomicas basicas enfermeriaPosiciones anatomicas basicas enfermeria
Posiciones anatomicas basicas enfermeria
 
Torax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxTorax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de torax
 
Plan de Desparasitacion 27.03.2024 minsa.pptx
Plan de Desparasitacion 27.03.2024 minsa.pptxPlan de Desparasitacion 27.03.2024 minsa.pptx
Plan de Desparasitacion 27.03.2024 minsa.pptx
 

Matemáticas y Cáncer

  • 1. X CONGRESO Logroño, 12 al 14 de mayo 2011 MATEMÁTICAS Y CÁNCER Esquema general Introducción al tema Modelos matemáticos de aplicación 1) Clásicos 2) Modernos Geometría fractal Teoría del caos Matemática genética y cáncer Conclusiones actualizadas
  • 2. ¿Qué se le puede pedir a un Modelo Matemático? Que represente la realidad, lo más fielmente posible. Para ello: Buena elección del tipo de modelo. Correcto planteamiento. Adecuada formulación. Posibilidades de resolución. Aplicabilidad. TIPOS DE MODELOS MATEMÁTICOS: Modelos determinísticos y estocásticos. Modelos continuos y discretos. Modelos matemáticos en tumores: a) Clásicos: Exponencial, Logístico, de Von Bertalanffy, de Gompertz … (Hay muchos de ellos) b) Actuales: de Brú, de Murray. (Otros) Modelos de cantidad de células y modelos de ciclo celular. MATEMÁTICAS Y CÁNCER Las Variables Tiempo Espacio
  • 3. CRECIMIENTO DE POBLACIONES 1 – MALTHUS (1798) Curva exponencial 2 – VERHULST (1838) Curva logística 3 – VOLTERRA – LOTKA (1925) “De las dos especies” EJPLO DE APLICACIONES: Crecimiento y propagación de tumores, Id. de bacterias, Estudios genéticos varios, Inmunología, etc. Surgieron estos estudios con motivo del tema de la reproducción de los animales (Fibonacci, “ La isla de los conejos ”, S-XIII) t y Curva exponencial Curva logística Capacidad de carga y t K
  • 4. MODELO EXPONENCIAL t C Quimio: Si destruye el 95 % de células por sesión, Precisan 7 sesiones para que quede una célula en un tumor de 10 células inicialmente. ( Condiciones determinadas) Aquí  sería negativo e igual a – 3 . 10 lo que implica: Tasa de crecimiento,  Si tiempo duplicación = 3 meses, podemos escribir:
  • 5. MODELO LOGÍSTICO EJPLO.- Tomando un a = 0.08 / mes y un b = 0.003 , K = 26.7 por tanto. Entonces el tiempo de duplicación sería: El máximo de [1] para t =  , sería K = 26.7 veces el volumen del tumor detectado en el tiempo t = 1. ( T. cerebrales, p. ej.) lo que implica: t = 9.16 meses [1] Con K = a / b (Elemento de freno) y t a = tasa de crecimiento b = coeficiente de densidad K
  • 6. MODELO DE Von BERTALANFFY Aquí conviene calcular y en función de t , mediante la construcción de tablas. Para a = 0.25/mes y b = 0.1, el tiempo de duplicación resulta ser igual a 16 meses. El máximo volumen del tumor, para t =  , sería igual a 1 / b. (El factor de “freno” es ahora b y ) t y
  • 7. MODELO DE GOMPERTZ (Cuando f (  ) decrece exponencialmente con el tiempo, tenemos la clásica función de Gompertz.) Siendo k = e a t y Familia de distribuciones de Gompertz: con  constante o no .
  • 8. Transformación Angiogénesis Motilidad e invasión Embolismo circul . Adherencia Detención en lecho capilar Extravasación en parenquima Reacción al entorno Proliferación tumoral y angiogénesis Trasporte Agregación cel. Metástasis Metástasis de metástasis Capilares, vénulas, etc Extensión espacial                                                                                                                                                      MODELO DE METÁSTASIS
  • 9. Se conocen más de un millar de modelos matemáticos para el crecimiento en número de las células cancerosas, lo que puede significar que: a) Hay muchas variedades de tumores. b) Tienen defectos casi todos los modelos. c) Varía el tipo de modelo en los diferentes estadíos del tumor. d) Es difícil la determinación de los parámetros. e) Intervienen otros factores propios del paciente. Etc. No todas las ecuaciones diferenciales se pueden solucionar directamente, siendo preciso recurrir a métodos numéricos en muchas ocasiones. Hasta ahora sólo hemos tenido en cuenta la evolución temporal de los tumores, pero no su difusión espacial. (Crecimiento, metástasis) Veremos más adelante otros tipos de modelos que intentan obviar estas dificultades. (James D. Murray, el propuesto por Antonio Brú, etc). CRÍTICA A LO HASTA AHORA DICHO
  • 10. Tumor de 8  3  2.5 cm. Se extirpa, pero quedan: 3 cc locales y 15 metástasis de 0.75 cc en promedio (subclínicas). Volumen de las metástasis = 15  0.75 = 11.25 cc. De acuerdo con con lo dicho, proceden los siguientes cálculos: (Modelo Exponencial simple) EJEMPLO (1) Vol. Inic. del tumor : (Aquí = 31.4 cc.) Tiempos de duplicación: Tumor = 3 meses ; Metas = 2 meses. O sea: Suponiendo que 1 cc contiene 10 9 células tumorales, tenemos: Número de células del tumor = 3  10 9 Núm. células de las metas = 11.25  10 9
  • 11. Si una sesión de “quimio” deja “vivas” al 5 % de células del tumor y al 2 % de células de las metástasis, resultará: Con lo que podemos confeccionar la siguiente tabla: EJEMPLO (2) Núm. de células tumorales tras la 1ª sesión de quimio: 0.15  10 9 = 15  10 7 Núm. de células de las metas tras la 1ª sesión de quimio: 9 0.225  10 = 22.5  10 7 Núm. de células tumorales 14 días después: Núm. de células de las metas 14 días después: Etc. N t 0 14
  • 12. NOTA.- Es de destacar el componente aleatorio en las últimas sesiones. Tras la sesión de quimio Núm. de células del tumor Núm. de células de las metas 14 días después: Núm. células Núm. de células del tumor de las metas 1 ª 15  10 7 22.5  10 7 16.8  10 7 26.8  10 7 2 ª 84  10 5 54  10 5 94.5  10 5 63.6  10 5 3 ª 4.72  10 5 1.27  10 5 5.30  10 5 1.52  10 5 4 ª 26.5  10 3 3  10 3 29.8  10 3 3.6  10 3 5 ª 14.9  10 2 72 16.7  10 2 86 6 ª 83.5 1.71 93.7 2.04 7 ª 4.7 0.04 5.3 0.05 8 ª 0.26 0.001 0.30 0.001 9 ª 0.01 0.00002 0.02 0.00003 1 0 ª 0.0008 0 0.0009 0 EJEMPLO (3)
  • 13. Más aun: ¿Cuando empezó el tumor del ejemplo? Resolviendo la ecuación , resulta : t = 104.63 meses = 8.72 años. Otra pregunta: ¿Cuándo se hizo “clínico” el tumor? ¡ Los comentarios surgen solos ! (Podemos intentar, ciertamente, modificar el modelo) ? ? EJEMPLO (4) Recordemos: Se hace clínico cuando su volumen es 1 cc. (= células) Al principio, Como  = 0.231 y En ese caso escribimos: que resuelta da: t = 89.71 meses = 7.5 años. [¿Gompertz?]
  • 14. EJEMPLO (final) NOTA 1.- El mismo tumor, con un modelo Gompertz de crecimiento, con parámetro  de 0.05 al mes, habría comenzado 8 meses antes de su diag- nóstico, ¡Y no, hace más de 8 años! NOTA 3.- En el nuevo contexto, tras la 8 ª sesión de quimioterapia ya no quedaría activa ninguna célula del tumor (parecidamente al ejemplo). NOTA 4.- Acerca de las metástasis no estamos en condiciones de estimar en qué momento se iniciaron, en el caso de suponer que el modelo sigue la distribución de Gompertz. NOTA 5.- Los modelos matemáticos, si son acertados y se pueden estimar sus parámetros con la suficiente aproximación, constituyen una valiosa ayuda para el conocimiento de la dinámica de las células tumorales. NOTA 2.- Se evidencia la conveniencia de cambiar de modelo o de utilizar simultánea o sucesivamente, en este caso y en otros, dos o varios modelos diferentes.
  • 15. DINÁMICA UNIVERSAL DE CRECIMIENTO TUMORAL (Antonio Brú & al.) FUNDAMENTOS: - MBE (Molecular beam epitaxy) - Crecimiento en superficie (interface) - Dimensiones fractales del borde - Similitud de tumor y metástasis Scaling analysis x = extensión del tumor t = tiempo de desarrollo K = coef. de distrib. en superficie F = tasa de crecimiento  = “ruido aleatorio” CRÍTICA
  • 16. Parámetros:  = tasa de crecimiento D = coef. difusión espacial Valores: c ( x,t ) =Núm. células neoplásicas en la posición x y en el tiempo t . . . MODELO DE J. D. MURRAY (1) Solución : N = Núm cél. tum en t = 0 r = radio tumoral medio 0 Fase de establecimiento ( Te ): tiempo entre inicio y detección del tumor. Se cumple: lo que implica: con Tiempo de supervivencia ( Ts ):
  • 17. 1 – Soporte de conocimientos médicos. 2 – Modelos matemáticos básicos. 3 – Diseminación tumoral “in vitro”. 4 – Diseminación en animales de experimentación. 5 – Diseminación en seres humanos. 6 – Ensayo de diversos tipos de tratamientos. 7 – Caso particular de la cirugía. 8 – Recurrencia de tumores. 9 – Caso de tejidos heterogéneos. 10 – Modelos aplicables a la quimioterapia. 11 – Caso de policlonalidad celular. (Un verdadero modelo de diseño experimental) Swanson, K.R; Alvord Jr, E.C; Woodward, D.E; Cook, J; Tracqui, P; Cruywagen, G.C; Bridge, C; etc. . . . MODELO DE J. D. MURRAY (2) ASPECTOS A CONSIDERAR (“Pasos”)
  • 18. Propagación espacial MODELO DE J. D. MURRAY (3) 1 – Paseo aleatorio Prob. de alcanzar el punto m tras n pasos = (Distrib. normal) 2 – Ecuación de ondas D = coef. difusión C = núm. células Cuya solución es: Q = Partículas por unidad de área, con x = 0 y t = 0. (Eqs. en derivadas parciales) 3 – Ecuación de Fisher-Kolmogorov ( Forma más simple ) Cuya solución es: u = concentración; c = Velocidad de propagación de la onda viajera; a , A = constantes. (Deriv. parciales) P m
  • 19. ¿ Qué es un fractal ? (Mandelbrot) EL FRACTAL DE KOCH : Estructuras fractales en el organismo: Ramif. de vasos Morfol. neuronas Ramif. bronquiales Etc. Otras: Hojas de árboles Helechos Cortezas de árbol Contornos geográficos Etc. FRACTALES Propiedades: Longitud infinita, Área finita, Invariancia de escala.
  • 20. Un Fractal Geométrico: el triángulo de Sierpinski MEDIDA del área no blanqueada = CERO
  • 21. UN FRACTAL GEOMÉTRICO CARACTERÍSTICO (Juliá)
  • 22. El contorno de Asturias La medida de un rectángulo ¿Qué longitud tiene? Box counting DIMENSIÓN (D): (Hausdorff) N(a) = núm círcul. a = Radio círculos N(a)  a - D Dim. fractal KOCH:
  • 23. X = ln ( radio ) Y = ln ( número ) Y = a ’ + b X a’ = ln ( a ) a ’ = 6. 4186 b = - 1. 0768 Recta de regresión X Y De donde, haciendo  = 2 Km: siendo D = 1. 0768 , resulta: radio de a ( Escalamiento ) EL MÉTODO “Box counting” ( Perímetro de Asturias ) 1.6094 4.6728 2.0149 4.2341 2.3026 3.9572 2.5649 3.6889 3.2189 2.9444 3.9120 2.1972 ln radio ln núm. Fórmula de Richardson para la longitud:
  • 24. TEORÍA DEL CAOS (1) 1 – El experimento de Edward Lorenz (1961) 0.506127 contra 0.506 Predicción del tiempo. El efecto mariposa. Precios del algodón (Mandelbrot). 2 – El atractor de Lorenz
  • 25. TEORÍA DEL CAOS (2) 3 – El hallazgo de Robert May (Poblaciones biológicas) al variar el valor de r ... Número de Feigenbaum: 4,669 4 – Otros: El latido cardíaco Fractales y caos, etc Relatividad, mecánica cuántica y caos (S-XX). Período = 2 Período = 4 Caos
  • 26. MATEMÁTICA GENÉTICA 1 – Caminos aleatorios y ADN Purinas: Adenina, Guanina. Pirimidinas: Citosina, Timina. Regla Purina-pirimidina: Pirimidina: arriba, Purina: abajo. 3 – Papel posible del caos. 2 – Perfil fractal (Paisajes) Rugosidad unida a NO codificación. a) Gran parte de zonas que no codifican. b) Sólo las zonas que codifican. c) Secuencia de bacteriófago: sólo zonas que codifican.
  • 27. 1.- Las Matemáticas deben entrar a formar parte de los equipos multidisciplinares que se ocupan de Investigación Básica en Ciencias de la Salud. 2.- Hoy día todavía no pueden resolver las Matemáticas los problemas que plantean el cáncer y otras dolencias, pero ya suponen una ayuda notable. 3.- Así como la Bioquímica ha tenido un papel fundamental en Medicina, es ya el tiempo en que las Matemáticas han de asumir un protagonismo básico en Ciencias de la Vida. 4.- La investigación biomatemática en determinadas disciplinas, …. como la genética, por ejemplo, requiere que el investigador …. posea un conocimiento notable de ambas materias. CONCLUYENDO ...
  • 28. X CONGRESO Logroño, 12 al 14 de mayo 2011 m i g u e l . a n d e r i z @ u n a v a r r a . e s MATEMÁTICAS Y CÁNCER Muchas gracias por su atención