CAPITULO 3: La Derivada
           Ejercicios Propuestos 3.1
           1) a) 2.5         b) 2.3                           c) 2.1         d) f ´( 2 ) = 2
                          1
           2) f ´( 3 ) =
                          2
           3) a) f ´( x ) = 3               b) f ´( x ) = −2                 c) f ´( x ) = 2 x + 2        d) f ´( x ) = −4 x + 1

                e) f ´( x ) = 6 x
                                    2
                                            f) f ´(x) =           −3
                                                                   2
                                                                       (3x + 2)     − 32




           Ejercicios Propuestos 3.2
           1)   f ´(1) = 2                                    2) No existe                 3) No existe                            4) a = 6 , b = −4
           5) a = 3 , b = −1                                  6) a = c − 2 ∧ b = 3 − 2c               ∧         c∈R



           Ejercicios Propuestos 3.3
                                                   2
                            a) f ´( x ) = 4 x
                                                  − 23
           1)                             3
                                                         +
                                                     − 3e x
                                                   x
                            b) f ´( x ) = 5 x + 3 x + 4 x
                                             4     2


                            c) f ´( x ) = 2 x + cos x (1 − x − cos x ) − senx (1 + x − senx )

                                              x 2 − 1 cos x ( x + 1)
                                                               2

                            d) f ´( x ) =      2
                                                     −
                                             x senx      xsen 2 x
                                             e x ⎡(1 + x )( senx + 1) − x cos x ⎤
                                                 ⎣                              ⎦
                            e) f ´( x ) =
                                                                  ( senx + 1)
                                                                                2



                                            xe x
                            f) f ´( x ) =        ⎡( x + 2 ) ln x + 1⎤
                                             2 ⎣                    ⎦
           2) y = 4 x + 1
                         13
           3) y = −3 x +
                          4
           4) y = 2 x + 1 ; y = −2 x + 9
           5) y = 12 x + 81 ; y = 12 x − 44
           6) P (3,9)
           7) 3 5
           8) 50!
                 10
           9)
                 49


           Ejercicios Propuestos 3.4
                                                       x −1                                                         −x
           1.               a) f ´( x ) =                                                  b) f ´( x ) =
                                                                                                           ( 2 x − 3)
                                                                                                                               3
                                               x2 − 2x + 2                                                                         2




                                                  4e 2 x                                                                   2x
                            c) f ´( x ) =                                                  d) f ´( x ) =
                                             (e        + 1)                                                (x       − 1)           (x       + 1)
                                                              2                                                            1                       3
                                                  2x                                                            2              2        2              2




                                            ⎛ senx ⎞ ⎛ cos x cos 2 x + 2 senxsen 2 x ⎞
                                                                  2

                            e) f ´( x ) = 3 ⎜          ⎟ ⎜                              ⎟
                                            ⎝ cos 2 x ⎠ ⎝        cos 2 2 x              ⎠
                                                  2x                                           8
                            f) f ´( x ) =                                 g) f ´( x ) =
                                          ( x + 1) ln ( x + 1)                           x ( x − 4)
                                                                                              2     2
− (sin 4 x ) e          1+ cos 2 2 x
3. ( f          g )´(x) =
                                             1 + cos 2 2 x
4.         a) 4              b) −8                            c) 2                         d) -10                e) −6
5.         16


Ejercicios Propuestos 3.5

1. a)
             d4
            dx    4
                      [cos(x )] = 48x sin (x )+ (16x
                                 2               2           2           4
                                                                                  ) ( )
                                                                             − 12 cos x 2

            d 2 ⎡ xsen2 (πx ) ⎤ 2π (sin 2πx + πx cos 2πx )
     b)          ⎢            ⎥=
            dx 2 ⎢ 1 + x ⎥
                 ⎣            ⎦          (1 + x )3
     c)
        dx n
             dn
                      [ ]
              xe x = ne x + xe x

          n⎛ 5 ⎞           5 (n!)
     d) Dx ⎜        ⎟=
            ⎝ 4 − x ⎠ (4 − x )n +1
                  n ⎡1 +     x⎤               2(n!)                           30 ⎡ 1 +x⎤    2(30!)
     e) Dx ⎢       ⎥=             entonces Dx                                    ⎢1 − x ⎥ =
           ⎣ 1 − x ⎦ (1 − x )n +1                                                ⎣      ⎦ (1 − x )31
                              ⎧(− 1) +1 (n sin x + x cos x ) ;
                                                     n +1
                dn
                  [x sin x] = ⎪
                                                      2                                    si n es impar
      f)                      ⎨                                                                            entonces
             dx n             ⎪(− 1) +1 (n cos x − x sin x ) ;
                                                     n
                              ⎩                      2                                     si n es par

                d 35
                       [x sin nx] = −35 sin x − x cos x
             dx35
      d ⎡ d 2 ⎛ 1 ⎞⎤ 2(1 − 2 x )
2.       ⎢x     ⎜       ⎟⎥ =
      dx ⎢ dx 2 ⎝ 1 + x ⎠⎥ (1 + x )4
         ⎣               ⎦
3. an (n!)

4. p( x ) = 2 x − 3 x + 3 x − 1
                         3           2




Ejercicios Propuestos 3.6
                        y                                                         y
1. a) y´= − 3                                                  b) y´= −
                        x                                                    x ( y + 1)
                         y 2e xy                                                    y
     c) y´= −                                                 d) y´=
                       xye xy + 1                                       sec y tan y + sec2 y − x
                             2y
     e) y´= −
                        (
                       x 2+ y            )
3. y =       −5
              3       x+     8                                4. y = x − 2                          5. y = − x + 2
                             5
6. y = − x + 2                                                7. x = 0                              8. y = 3 x
                                                                                                           2

                                                                          48 xy 2 − 9 x 4                         1
9. (1,1)                                                      10. y´´=                              11. y´´=      4     1
                                                                                       3
                                                                                64 y                           3x 3 y       3


12.    y´´= −3
Ejercicios Propuestos 3.7
                                                                                 t +1
1. a) y´= tan(t )                                                  b) y´=
                                                                                 (
                                                                             t t2 +1         )
2. y = x + 4 −π a                                                  3. y = 3x − 1                 4. y = 3 x + 41
                        2                                                                                8         8
5. y = 5 x                                 6. a) y´´= cos t ,                                    b) y´´´= cos t




Ejercicios Propuestos 3.8
1.        y = 2x − 2                                               2.       y = − 3x + 8                         3. y = − 3 x + 2 2

4. y − 3 3 =
             12 3 + 3
             2
                      x− 3
                            12 − 3 3
                                           (           2
                                                           )

Ejercicios Propuestos 3.9
1.  1                                      2.          1                             3. 2                        4. 3
      16                                                   5                                 3
5. x − 5 y + 5 = 0                         6. x − 11 y − 9 = 0                                   7. 2ax + y − 2a (a + 1) = 0                      8. 3

9. a) y´= arcsin x +
                                               x
                                                           −
                                                                    1
                                                                                                 b) y´= arctg x    (2 )
                                       1 − x2                      x2 + 1

      c) y´=
                            4
                                                                                                 d) y´= e
                                                                                                                   (
                                                                                                            arctg x 3 + senx   )⎡
                                                                                                                                ⎢ 3x 2 + cos x ⎤⎥
                       3 cos x + 5
                                                                                                                               ⎣     (
                                                                                                                               ⎢1 + x3 + senx 2 ⎥
                                                                                                                                                ⎦ )
Ejercicios Propuestos 3.10
                   sec5 x 3 tgx + 1 ⎡       1    sec x      3 x 2 csc x3ctgx3 ⎤
1. a) y´=                           ⎢5tgx +               +                   ⎥
                      csc x3 − 4 ⎢  ⎣       3 senx + cos x 2 csc x3 − 4 ⎥     ⎦
                                          1 − x2 ⎡ 3                     20 + 15 x3 ⎤
                                           3
                   4                                          2 x
     b) y´=            x3 cos 4 x                ⎢ − tg 4 x −          −            ⎥
                                       (        5 4x
                                        4 x − x3 ⎢
                                                 ⎣             )
                                                              3 1− x 2
                                                                          4 x + x3 ⎥⎦
               ⎡                                                        ⎤
               ⎢                                                        ⎥⎡                                                       ⎤
               ⎢ 1                   2 xe x2             2        3 ⎥⎢              x −1            ⎛ 2                        ⎞⎥
     c)    y´= ⎢          +                         −         −         ⎥⎢                    arcsen⎜ e x                      ⎟⎥
               ⎢ 2(x − 1)                             3(x + 2) 2(x + 3) ⎥ ⎢ 3                       ⎜                          ⎟⎥
                                  ⎛ x2 ⎞                                ⎥ ⎢ (x + 2)2 (x + 3)3       ⎝                          ⎠
                                                  2
               ⎢            arcsen⎜ e ⎟ 1 − e 2 x                                                                                ⎥
               ⎢                  ⎜       ⎟                             ⎥⎣                                                       ⎦
               ⎣                  ⎝       ⎠                             ⎦
               x    ⎡           1⎤
     d) y´= x 3 3 x ⎢ln 3 ln x + ⎥
                    ⎣           x⎦
                    ⎡n       ⎤
     e) y´= x n n x ⎢ + ln n ⎥
                    ⎣x       ⎦
                ⎧                                                         ⎡                                                                      ⎤⎫
                ⎪            ⎡                                            ⎢                                                                      ⎥⎪
                ⎪                        2 ⎤
                ⎪ 2 arctan x ⎢ arcsin(sin x) ⎥                            ⎢             1                             1                           ⎪
                                                                                                                                                 ⎥⎪
     f)   y´= y ⎨              ln              + 2 arctan 2 x sin x cos x ⎢                            −                                         ⎥⎬
                             ⎢               ⎥
                ⎪ 1 + x2 ⎢         arccos
                                             ⎥                            ⎢       ⎛ 2 ⎞             4 x arccos⎛ cos 2 x ⎞ 1 − cos 4 x            ⎥⎪
                ⎪            ⎣               ⎦                            ⎢ arcsin⎜ sin x ⎟ 1 − sin           ⎜         ⎟                        ⎥⎪
                ⎪
                ⎩                                                         ⎣       ⎝       ⎠                   ⎝         ⎠                        ⎦⎪
                                                                                                                                                  ⎭

                                                       ⎡                                                                                     ⎤
                 (
     g) y´= arcsin 1 + e 2 x(              )   sec x ⎢
                                                                             (
                                                        sec x tan x ln arcsin 1 + e 2 x +(       )  2 sec xe x                               ⎥
                                                       ⎢
                                                       ⎢
                                                       ⎣                                                     (
                                                                                          arcsin 1 + e 2 x − 2 + e 2 x  ) (              )   ⎥
                                                                                                                                             ⎥
                                                                                                                                             ⎦
                                           ⎡ 3 cos 3 x arctan(cos 3 x ) 3 sin 3 x ln(ln(sin 3 x )) ⎤
     h) y´= [ln(sin 3 x )]arctan(cos 3 x ) ⎢                           −                           ⎥
                                           ⎣ ln(sin 3 x ) sin 3 x            1 + cos 2 3 x         ⎦
                                       2 x (x + y ) − y x 2 + y 2   (            )
     i) y´=
                 (x + y )(x     2          )                            (
                                    + y 2 ln (x + y ) + y x 2 + y 2 − 2 y (x + y )   )
               (   x⎡
                            ) (
     j) y´= 1 + x 2 ⎢ln 1 + x 2 +
                    ⎢
                                   2x2 ⎤
                                         ⎥
                                  1 + x2 ⎥
                                                   )
                    ⎣                    ⎦
2.   (ln 2)x − y + 1 = 0
3.   x+ y−2 = 0
4. 14




                                                                      Misceláneos
1. a) V                                   b) V                                     c) F          d) V        e) V
   f) V                                   g) V                                     h) V          i) F        j) F
   k) F                                   l) F                                     m) V          n) F        o) V
   p) F                                   q) F                                     r) F          s) F        t) V
   u) V                                   v) F                                     w) F

2. a) y´=
                                  (       )
                cos y − 2 xy 2 + 2 x sin x 2 + y 2 ecos (x
                                                         )                            2
                                                                                          + y2

          2 x y − 2 y sin (x + y )e (
                    2                          ) + x sin y
                                                    2         2   cos x 2 + y 2

                     ⎡ ln (x + 1) 2 x ln x ⎤
   b) y´= (x + 1) ⎢
                               ln x                 2
                                  +
                                    (x + 1)⎥⎥⎦
                   2
                                                                      2
                     ⎢
                     ⎣      x

          cos(ln (cos x + e ))ln (cos x + e )(3e − sin x )
                               2                        3x                     3x         3x
   c) y´=
                   sin (ln (cos x + e ))(cos x + e )
                                                2                  3x                     3x

                                                 1
     d)      y´=                         3
                           x   y                 1
                    2        +      − y 2 arctan
                           y y2 + 1              y
                ⎛ x      e ⎞ xx x                x
     e) y´= x ⎜ e ln x +
             ex            ⎟ + e x (ln x + 1)
                       ⎜                        x ⎟
                       ⎝                          ⎠

     f) y´=
              cos x + x
                                             −
                                                    (2            )
                                                             x + 1 sin x + x
                        2 x                                   4 x+ x
                       6
     g) y´=
               4 − 9 x2
                   x2 + 2          1 + arctan x ⎡ x
                                   3
                                                        1⎛        1      ⎞ 1        1 ⎛ ex              ⎞⎤
     h) y´=                                     ⎢      + ⎜               ⎟         − ⎜                  ⎟⎥
                               4
                                 1 + ex         ⎢ x + 2 3 ⎝ 1 + arctan x ⎠ 1 + x
                                                   2                             2  4 ⎜ 1 + ex
                                                                                      ⎝
                                                                                                        ⎟⎥
                                                                                                        ⎠⎦
                                                ⎣
                                                 ⎡ 2x                                        ⎤
          y´= ( sin 3 x )                        ⎢1 + x 4 ln ( sin 3x ) + 3arctan x cot an3x ⎥
                                   arctan x 2                                      2
     i)
                                                 ⎣                                           ⎦
                                                                           2
                                                                               x
                           1                    2 arctan x earctan
     j) y´=                              +
               x 1 − ln 2 x                                  1 + x2
                  x( y − x )
     k) y´=
               2 x 2 + xy + y 2
     l) y´= e
                tan x
                           (sec    2
                                       x tan e x + e x sec2 e x            )
                           2   y
                             −
                           x x+ y
     m) y´=
                ln (x + y ) +
                                          y
                                         x+ y
3. 2 f ( x) f ´(x )
4. a = 2c ∧ b = 1 ∧ d = c + 1 ∧ c ∈ R

5. y = −2 x + 2 3

     [
6. Dx (g
                 e
                   f )](1) =
                 2
7. y = x ∧ y = − x
8. y = −6 x + 5
9. f es derivable en (−1,0 ) ∪ (0,1) ∪ (1,2 )
10. k = −8 ∨ k = 3

      d3 y
11.        = − 1− t2
      dx 3
      d3y                        1
12.                     =−
       dx3      t =1
                                 8
13.   a = −3 , b = −4 , c = 1
14. y = 2 x − 2
                3            3
15. y = 1 x + 3
                2            2
        2
      d y                            2
16.             =
       dx   2
                        e (cos t − sin t )3
                         t

    dy
17.      =π2 −2
    dx
              2
18. f ´(1) =
             27
                                         3
19. y = x − 2a⎜
               ⎛ 2⎞
                    ⎟
               ⎝ 2 ⎠
20. a = c + 1 ∧ b = 1 ∧ c ∈ R
21 y = x + 1
22. y = 6 x − 6
23. y = − 1 x + 3
                    2            2
24. y = 3x − 1

25. De F (x ) tenemos F ´(x) = cos x f (cos x ) − sin x f ´(cos x )
                                                                  2


      y como             F ´(− x) = cos(− x ) f (cos(− x )) − sin 2 (− x ) f ´(cos(− x )) = F ( x)
      Por tanto F ´(x) es PAR
26. k = −7
    d 50 ⎡ 1 − x ⎤  2(50!)
27.      ⎢       ⎥=
    dx50 ⎣1 + x ⎦ (1 + x )51
28. y = − x + 3
29. y = − x − 1
                             4
      ⎡ d −1 ⎤
           f ⎥ (4 ) =
                       1
30. ⎢
      ⎣ dx   ⎦        15

Respuestas De Las Derivadas

  • 1.
    CAPITULO 3: LaDerivada Ejercicios Propuestos 3.1 1) a) 2.5 b) 2.3 c) 2.1 d) f ´( 2 ) = 2 1 2) f ´( 3 ) = 2 3) a) f ´( x ) = 3 b) f ´( x ) = −2 c) f ´( x ) = 2 x + 2 d) f ´( x ) = −4 x + 1 e) f ´( x ) = 6 x 2 f) f ´(x) = −3 2 (3x + 2) − 32 Ejercicios Propuestos 3.2 1) f ´(1) = 2 2) No existe 3) No existe 4) a = 6 , b = −4 5) a = 3 , b = −1 6) a = c − 2 ∧ b = 3 − 2c ∧ c∈R Ejercicios Propuestos 3.3 2 a) f ´( x ) = 4 x − 23 1) 3 + − 3e x x b) f ´( x ) = 5 x + 3 x + 4 x 4 2 c) f ´( x ) = 2 x + cos x (1 − x − cos x ) − senx (1 + x − senx ) x 2 − 1 cos x ( x + 1) 2 d) f ´( x ) = 2 − x senx xsen 2 x e x ⎡(1 + x )( senx + 1) − x cos x ⎤ ⎣ ⎦ e) f ´( x ) = ( senx + 1) 2 xe x f) f ´( x ) = ⎡( x + 2 ) ln x + 1⎤ 2 ⎣ ⎦ 2) y = 4 x + 1 13 3) y = −3 x + 4 4) y = 2 x + 1 ; y = −2 x + 9 5) y = 12 x + 81 ; y = 12 x − 44 6) P (3,9) 7) 3 5 8) 50! 10 9) 49 Ejercicios Propuestos 3.4 x −1 −x 1. a) f ´( x ) = b) f ´( x ) = ( 2 x − 3) 3 x2 − 2x + 2 2 4e 2 x 2x c) f ´( x ) = d) f ´( x ) = (e + 1) (x − 1) (x + 1) 2 1 3 2x 2 2 2 2 ⎛ senx ⎞ ⎛ cos x cos 2 x + 2 senxsen 2 x ⎞ 2 e) f ´( x ) = 3 ⎜ ⎟ ⎜ ⎟ ⎝ cos 2 x ⎠ ⎝ cos 2 2 x ⎠ 2x 8 f) f ´( x ) = g) f ´( x ) = ( x + 1) ln ( x + 1) x ( x − 4) 2 2
  • 2.
    − (sin 4x ) e 1+ cos 2 2 x 3. ( f g )´(x) = 1 + cos 2 2 x 4. a) 4 b) −8 c) 2 d) -10 e) −6 5. 16 Ejercicios Propuestos 3.5 1. a) d4 dx 4 [cos(x )] = 48x sin (x )+ (16x 2 2 2 4 ) ( ) − 12 cos x 2 d 2 ⎡ xsen2 (πx ) ⎤ 2π (sin 2πx + πx cos 2πx ) b) ⎢ ⎥= dx 2 ⎢ 1 + x ⎥ ⎣ ⎦ (1 + x )3 c) dx n dn [ ] xe x = ne x + xe x n⎛ 5 ⎞ 5 (n!) d) Dx ⎜ ⎟= ⎝ 4 − x ⎠ (4 − x )n +1 n ⎡1 + x⎤ 2(n!) 30 ⎡ 1 +x⎤ 2(30!) e) Dx ⎢ ⎥= entonces Dx ⎢1 − x ⎥ = ⎣ 1 − x ⎦ (1 − x )n +1 ⎣ ⎦ (1 − x )31 ⎧(− 1) +1 (n sin x + x cos x ) ; n +1 dn [x sin x] = ⎪ 2 si n es impar f) ⎨ entonces dx n ⎪(− 1) +1 (n cos x − x sin x ) ; n ⎩ 2 si n es par d 35 [x sin nx] = −35 sin x − x cos x dx35 d ⎡ d 2 ⎛ 1 ⎞⎤ 2(1 − 2 x ) 2. ⎢x ⎜ ⎟⎥ = dx ⎢ dx 2 ⎝ 1 + x ⎠⎥ (1 + x )4 ⎣ ⎦ 3. an (n!) 4. p( x ) = 2 x − 3 x + 3 x − 1 3 2 Ejercicios Propuestos 3.6 y y 1. a) y´= − 3 b) y´= − x x ( y + 1) y 2e xy y c) y´= − d) y´= xye xy + 1 sec y tan y + sec2 y − x 2y e) y´= − ( x 2+ y ) 3. y = −5 3 x+ 8 4. y = x − 2 5. y = − x + 2 5 6. y = − x + 2 7. x = 0 8. y = 3 x 2 48 xy 2 − 9 x 4 1 9. (1,1) 10. y´´= 11. y´´= 4 1 3 64 y 3x 3 y 3 12. y´´= −3
  • 3.
    Ejercicios Propuestos 3.7 t +1 1. a) y´= tan(t ) b) y´= ( t t2 +1 ) 2. y = x + 4 −π a 3. y = 3x − 1 4. y = 3 x + 41 2 8 8 5. y = 5 x 6. a) y´´= cos t , b) y´´´= cos t Ejercicios Propuestos 3.8 1. y = 2x − 2 2. y = − 3x + 8 3. y = − 3 x + 2 2 4. y − 3 3 = 12 3 + 3 2 x− 3 12 − 3 3 ( 2 ) Ejercicios Propuestos 3.9 1. 1 2. 1 3. 2 4. 3 16 5 3 5. x − 5 y + 5 = 0 6. x − 11 y − 9 = 0 7. 2ax + y − 2a (a + 1) = 0 8. 3 9. a) y´= arcsin x + x − 1 b) y´= arctg x (2 ) 1 − x2 x2 + 1 c) y´= 4 d) y´= e ( arctg x 3 + senx )⎡ ⎢ 3x 2 + cos x ⎤⎥ 3 cos x + 5 ⎣ ( ⎢1 + x3 + senx 2 ⎥ ⎦ ) Ejercicios Propuestos 3.10 sec5 x 3 tgx + 1 ⎡ 1 sec x 3 x 2 csc x3ctgx3 ⎤ 1. a) y´= ⎢5tgx + + ⎥ csc x3 − 4 ⎢ ⎣ 3 senx + cos x 2 csc x3 − 4 ⎥ ⎦ 1 − x2 ⎡ 3 20 + 15 x3 ⎤ 3 4 2 x b) y´= x3 cos 4 x ⎢ − tg 4 x − − ⎥ ( 5 4x 4 x − x3 ⎢ ⎣ ) 3 1− x 2 4 x + x3 ⎥⎦ ⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ 1 2 xe x2 2 3 ⎥⎢ x −1 ⎛ 2 ⎞⎥ c) y´= ⎢ + − − ⎥⎢ arcsen⎜ e x ⎟⎥ ⎢ 2(x − 1) 3(x + 2) 2(x + 3) ⎥ ⎢ 3 ⎜ ⎟⎥ ⎛ x2 ⎞ ⎥ ⎢ (x + 2)2 (x + 3)3 ⎝ ⎠ 2 ⎢ arcsen⎜ e ⎟ 1 − e 2 x ⎥ ⎢ ⎜ ⎟ ⎥⎣ ⎦ ⎣ ⎝ ⎠ ⎦ x ⎡ 1⎤ d) y´= x 3 3 x ⎢ln 3 ln x + ⎥ ⎣ x⎦ ⎡n ⎤ e) y´= x n n x ⎢ + ln n ⎥ ⎣x ⎦ ⎧ ⎡ ⎤⎫ ⎪ ⎡ ⎢ ⎥⎪ ⎪ 2 ⎤ ⎪ 2 arctan x ⎢ arcsin(sin x) ⎥ ⎢ 1 1 ⎪ ⎥⎪ f) y´= y ⎨ ln + 2 arctan 2 x sin x cos x ⎢ − ⎥⎬ ⎢ ⎥ ⎪ 1 + x2 ⎢ arccos ⎥ ⎢ ⎛ 2 ⎞ 4 x arccos⎛ cos 2 x ⎞ 1 − cos 4 x ⎥⎪ ⎪ ⎣ ⎦ ⎢ arcsin⎜ sin x ⎟ 1 − sin ⎜ ⎟ ⎥⎪ ⎪ ⎩ ⎣ ⎝ ⎠ ⎝ ⎠ ⎦⎪ ⎭ ⎡ ⎤ ( g) y´= arcsin 1 + e 2 x( ) sec x ⎢ ( sec x tan x ln arcsin 1 + e 2 x +( ) 2 sec xe x ⎥ ⎢ ⎢ ⎣ ( arcsin 1 + e 2 x − 2 + e 2 x ) ( ) ⎥ ⎥ ⎦ ⎡ 3 cos 3 x arctan(cos 3 x ) 3 sin 3 x ln(ln(sin 3 x )) ⎤ h) y´= [ln(sin 3 x )]arctan(cos 3 x ) ⎢ − ⎥ ⎣ ln(sin 3 x ) sin 3 x 1 + cos 2 3 x ⎦ 2 x (x + y ) − y x 2 + y 2 ( ) i) y´= (x + y )(x 2 ) ( + y 2 ln (x + y ) + y x 2 + y 2 − 2 y (x + y ) ) ( x⎡ ) ( j) y´= 1 + x 2 ⎢ln 1 + x 2 + ⎢ 2x2 ⎤ ⎥ 1 + x2 ⎥ ) ⎣ ⎦
  • 4.
    2. (ln 2)x − y + 1 = 0 3. x+ y−2 = 0 4. 14 Misceláneos 1. a) V b) V c) F d) V e) V f) V g) V h) V i) F j) F k) F l) F m) V n) F o) V p) F q) F r) F s) F t) V u) V v) F w) F 2. a) y´= ( ) cos y − 2 xy 2 + 2 x sin x 2 + y 2 ecos (x ) 2 + y2 2 x y − 2 y sin (x + y )e ( 2 ) + x sin y 2 2 cos x 2 + y 2 ⎡ ln (x + 1) 2 x ln x ⎤ b) y´= (x + 1) ⎢ ln x 2 + (x + 1)⎥⎥⎦ 2 2 ⎢ ⎣ x cos(ln (cos x + e ))ln (cos x + e )(3e − sin x ) 2 3x 3x 3x c) y´= sin (ln (cos x + e ))(cos x + e ) 2 3x 3x 1 d) y´= 3 x y 1 2 + − y 2 arctan y y2 + 1 y ⎛ x e ⎞ xx x x e) y´= x ⎜ e ln x + ex ⎟ + e x (ln x + 1) ⎜ x ⎟ ⎝ ⎠ f) y´= cos x + x − (2 ) x + 1 sin x + x 2 x 4 x+ x 6 g) y´= 4 − 9 x2 x2 + 2 1 + arctan x ⎡ x 3 1⎛ 1 ⎞ 1 1 ⎛ ex ⎞⎤ h) y´= ⎢ + ⎜ ⎟ − ⎜ ⎟⎥ 4 1 + ex ⎢ x + 2 3 ⎝ 1 + arctan x ⎠ 1 + x 2 2 4 ⎜ 1 + ex ⎝ ⎟⎥ ⎠⎦ ⎣ ⎡ 2x ⎤ y´= ( sin 3 x ) ⎢1 + x 4 ln ( sin 3x ) + 3arctan x cot an3x ⎥ arctan x 2 2 i) ⎣ ⎦ 2 x 1 2 arctan x earctan j) y´= + x 1 − ln 2 x 1 + x2 x( y − x ) k) y´= 2 x 2 + xy + y 2 l) y´= e tan x (sec 2 x tan e x + e x sec2 e x ) 2 y − x x+ y m) y´= ln (x + y ) + y x+ y 3. 2 f ( x) f ´(x ) 4. a = 2c ∧ b = 1 ∧ d = c + 1 ∧ c ∈ R 5. y = −2 x + 2 3 [ 6. Dx (g e f )](1) = 2 7. y = x ∧ y = − x 8. y = −6 x + 5
  • 5.
    9. f esderivable en (−1,0 ) ∪ (0,1) ∪ (1,2 ) 10. k = −8 ∨ k = 3 d3 y 11. = − 1− t2 dx 3 d3y 1 12. =− dx3 t =1 8 13. a = −3 , b = −4 , c = 1 14. y = 2 x − 2 3 3 15. y = 1 x + 3 2 2 2 d y 2 16. = dx 2 e (cos t − sin t )3 t dy 17. =π2 −2 dx 2 18. f ´(1) = 27 3 19. y = x − 2a⎜ ⎛ 2⎞ ⎟ ⎝ 2 ⎠ 20. a = c + 1 ∧ b = 1 ∧ c ∈ R 21 y = x + 1 22. y = 6 x − 6 23. y = − 1 x + 3 2 2 24. y = 3x − 1 25. De F (x ) tenemos F ´(x) = cos x f (cos x ) − sin x f ´(cos x ) 2 y como F ´(− x) = cos(− x ) f (cos(− x )) − sin 2 (− x ) f ´(cos(− x )) = F ( x) Por tanto F ´(x) es PAR 26. k = −7 d 50 ⎡ 1 − x ⎤ 2(50!) 27. ⎢ ⎥= dx50 ⎣1 + x ⎦ (1 + x )51 28. y = − x + 3 29. y = − x − 1 4 ⎡ d −1 ⎤ f ⎥ (4 ) = 1 30. ⎢ ⎣ dx ⎦ 15