Matemáticas
Grado Once
Cálculo
Función Cuadrática
Docente
Rodrigo Velasco Palomino
www.rodrivelp.blogspot.com
Institución Educativa Técnico Industrial
I.E.T.I
Popayán Cauca
Colombia
2
CALCULOI.E.T.I – www.rodrivelp.blogspot.com
TABLA DE CONTENIDO
FUNCIÓN CUADRÁTICA
1. Conceptos Básicos de Función Cuadrática
2. Puntos de corte con el eje X
3. Puntos de corte con el eje Y
4. Vértice
5. Mapa Conceptual
6. Vídeos Explicativos
a. Gráfica por el método de Tabulación
b. Gráfica con Dos puntos de corte, Método de
Factorización Función de la Forma x2 + bx +c
c. Gráfica con Dos puntos de corte, Método de
Factorización Función de la Forma ax2 + bx +c
d. Gráfica con Dos puntos de corte, Método de Fórmula
General, Función de la Forma ax2 + bx +c
e. Gráfica con Un solo punto de corte.
f. Gráfica Sin puntos de corte.
3
CALCULOI.E.T.I – www.rodrivelp.blogspot.com
FUNCIÓN CUADRÁTICA
O
FUNCIÓN DE SEGUNDO GRADO
Toda función cuadrática o función de segundo grado es una Función Polinómica, cuya gráfica
corresponde a la de una Parábola y cuya ecuación puede escribirse de la forma:
𝒇( 𝒙) = 𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
En la que dependiendo de los valores de a, b y c su gráfica puede ser:
1. Cóncava hacia arriba: Si a > 0
a. Con dos Raíces, o sea, con dos puntos de corte con el eje X. Si b2 - 4ac > 0
b. Con una Raíz, o sea, con un solo punto de corte con el eje X. Si b2 - 4ac = 0
c. Sin Raíces, o sea, sin puntos de corte con el eje X. Si b2 - 4ac < 0
2. Cóncava hacia abajo: Si a < 0
a. Con dos Raíces, o sea, con dos puntos de corte con el eje X. Si b2 - 4ac > 0
b. Con una Raíz, o sea, con un solo punto de corte con el eje X. Si b2 - 4ac = 0
c. Sin Raíces, o sea, sin puntos de corte con el eje X. Si b2 - 4ac < 0
PUNTOS DE CORTE DE LA PARÁBOLA CON EL EJE X
Para hallar los Puntos de Corte de una Parábola con el eje x lo podemos hacer de dos formas:
1. Por factorización de la función igualada a cero, tiene la desventaja que no todas las funciones
se pueden factorizar.
2. Por fórmula general:
𝒇( 𝒙) = 𝒚 = 𝒂𝒙 𝟐
+ 𝒃𝒙 + 𝒄
𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
Ejemplo:
Hallar los puntos de corte de la función y = x2 + 4x +3 por los dos métodos anteriores:
Solución:
Por factorización:
X2 + 4x + 3 = 0 (se deben buscar dos números que multiplicados den 3 y sumados den 4)
(x+1) (x+3) = 0
X= -1 y X = -3
Por fórmula general:
Identificamos los coeficientes: a = 1, b = 4, c = 3
4
CALCULOI.E.T.I – www.rodrivelp.blogspot.com
𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎
𝑥 =
−4 ± √42 − 4(1)(3)
2(1)
𝑥 =
−4 ± √16 − 12
2
𝑥 =
−4 ± √4
2
𝑥 =
−4 ± 2
2
x = −1 x = −3
(-1,0) y (-3,0)
PUNTOS DE CORTE DE LA PARÁBOLA CON EL EJE Y
Lo podemos hacer reemplazando por cero las equis de la función.
Ejemplo:
Hallar el punto de corte con el eje Y de la función f(x) = x2 + 4x + 3
Solución:
Reemplazamos x por cero
F(0) = 02 + 4(0) + 3
F(0) = 3
(0,3)
Operación innecesaria puesto que se puede deducir directamente de la ecuación, simplemente
observando el término independiente c=3
VÉRTICE DE LA PARÁBOLA
Lo podemos hacer reemplazando los valores de a, b y c en:
𝑉 = (
−𝑏
2𝑎
,
4𝑎𝑐 − 𝑏2
4𝑎
)
Ejemplo:
Hallar las coordenadas del vértice de la función f(x) = x2 + 4x + 3
Solución:
5
CALCULOI.E.T.I – www.rodrivelp.blogspot.com
Reemplazamos los coeficientes: a = 1, b = 4, c = 3
𝑉 = (
−4
2(1)
,
4(1)(3)− 42
4(1)
)
𝑉 = (
−4
2
,
12 − 16
4
)
𝑽 = (−𝟐, −𝟏)
Las coordenadas del vértice y los puntos de corte con los ejes X y Y los resumimos en una gráfica
en el plano cartesiano:
NOTA:
Se recomienda tener claros los conceptos de factorización de ecuaciones de las formas:
f(x) = x2 + bx + c y f(x) = ax2 + 4x + 3
El siguiente diagrama muestra mediante un ejemplo particular cada uno de los casos posibles en
una función cuadrática. El objetivo principal es la de identificar y diferenciar, en el menor tiempo
posible y con las menores operaciones posibles, dichos casos y pueda desempeñar un papel
importante en las pruebas.
En los vídeos seleccionados se tratará cada uno de los casos para que se observen los métodos
propuestos de solución y se adquiera habilidad en su desarrollo.
Función Cuadrática
f(x) = ax2+bx+c
Cóncava Hacia
Arriba
Si aes Positivo
Con 2 Raíces
f(x) = X2
Con 1 Raíz
f(x) = X2-4X+4
Con 0 Raíces
f(x) = X2-X-2
Cóncava Hacia
Abajo
Si aes Negativo
Con 2 Raíces
f(x) = -X2+4
Con 1 Raíz
f(x) = -x^2+6x-9
Con 0 Raíces
f(x) = -x^2+3x-4
VÍDEOS EXPLICATIVOS
GRÁFICA DE UNA FUNCIÓN CUADRÁTICA POR EL MÉTODO
TRADICIONAL DE TABULACIÓN
Tomado de Youtube en: https://youtu.be/heaetLBlraw
F(x) = x2 – 2x -8
Recomendado para principiantes y no muy óptimo para presentación de pruebas…
GRÁFICA DE UNA FUNCIÓN CUADRÁTICA CON DOS PUNTOS DE CORTE
CON EL EJE X DE LA FORMA F(X) = x2 + bx + c
F(x) = x2 – 4x - 12
POR EL MÉTODO DE FACTORIZACIÓN
Tomado de Youtube en: https://youtu.be/QX7BbPE3Ym4
GRÁFICA DE UNA FUNCIÓN CUADRÁTICA CON DOS PUNTOS DE CORTE
CON EL EJE X DE LA FORMA F(x) = ax2 + bx + c
F(x) = 3x2 – 4x - 15
POR EL MÉTODO DE FACTORIZACIÓN
Tomado de Youtube en: https://youtu.be/7dbODhcVo7A
8
CALCULOI.E.T.I – www.rodrivelp.blogspot.com
GRÁFICA DE UNA FUNCIÓN CUADRÁTICA CON DOS PUNTOS DE CORTE
CON EL EJE X DE LA FORMA F(x) = ax2 + bx + c
F(x) = -2x2 + 13x - 20
POR EL MÉTODO DE FORMULA GENERAL
Tomado de Youtube en: https://youtu.be/v7_FFHPe5LE
GRÁFICA DE UNA FUNCIÓN CUADRÁTICA
CON UN SOLO PUNTO DE CORTE CON EL EJE X
F(x) = x2
– 6x +9
Tomado de Youtube en: https://youtu.be/IAQ2CVjcW2I
GRÁFICA DE UNA FUNCIÓN CUADRÁTICA
SIN PUNTOS DE CORTE CON EL EJE X
F(x) = x2
– 6x + 12
Tomado de Youtube en: https://youtu.be/qwptGCQqne0

Función Cuadrática

  • 1.
    Matemáticas Grado Once Cálculo Función Cuadrática Docente RodrigoVelasco Palomino www.rodrivelp.blogspot.com Institución Educativa Técnico Industrial I.E.T.I Popayán Cauca Colombia
  • 2.
    2 CALCULOI.E.T.I – www.rodrivelp.blogspot.com TABLADE CONTENIDO FUNCIÓN CUADRÁTICA 1. Conceptos Básicos de Función Cuadrática 2. Puntos de corte con el eje X 3. Puntos de corte con el eje Y 4. Vértice 5. Mapa Conceptual 6. Vídeos Explicativos a. Gráfica por el método de Tabulación b. Gráfica con Dos puntos de corte, Método de Factorización Función de la Forma x2 + bx +c c. Gráfica con Dos puntos de corte, Método de Factorización Función de la Forma ax2 + bx +c d. Gráfica con Dos puntos de corte, Método de Fórmula General, Función de la Forma ax2 + bx +c e. Gráfica con Un solo punto de corte. f. Gráfica Sin puntos de corte.
  • 3.
    3 CALCULOI.E.T.I – www.rodrivelp.blogspot.com FUNCIÓNCUADRÁTICA O FUNCIÓN DE SEGUNDO GRADO Toda función cuadrática o función de segundo grado es una Función Polinómica, cuya gráfica corresponde a la de una Parábola y cuya ecuación puede escribirse de la forma: 𝒇( 𝒙) = 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄 En la que dependiendo de los valores de a, b y c su gráfica puede ser: 1. Cóncava hacia arriba: Si a > 0 a. Con dos Raíces, o sea, con dos puntos de corte con el eje X. Si b2 - 4ac > 0 b. Con una Raíz, o sea, con un solo punto de corte con el eje X. Si b2 - 4ac = 0 c. Sin Raíces, o sea, sin puntos de corte con el eje X. Si b2 - 4ac < 0 2. Cóncava hacia abajo: Si a < 0 a. Con dos Raíces, o sea, con dos puntos de corte con el eje X. Si b2 - 4ac > 0 b. Con una Raíz, o sea, con un solo punto de corte con el eje X. Si b2 - 4ac = 0 c. Sin Raíces, o sea, sin puntos de corte con el eje X. Si b2 - 4ac < 0 PUNTOS DE CORTE DE LA PARÁBOLA CON EL EJE X Para hallar los Puntos de Corte de una Parábola con el eje x lo podemos hacer de dos formas: 1. Por factorización de la función igualada a cero, tiene la desventaja que no todas las funciones se pueden factorizar. 2. Por fórmula general: 𝒇( 𝒙) = 𝒚 = 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄 𝑥 = −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 Ejemplo: Hallar los puntos de corte de la función y = x2 + 4x +3 por los dos métodos anteriores: Solución: Por factorización: X2 + 4x + 3 = 0 (se deben buscar dos números que multiplicados den 3 y sumados den 4) (x+1) (x+3) = 0 X= -1 y X = -3 Por fórmula general: Identificamos los coeficientes: a = 1, b = 4, c = 3
  • 4.
    4 CALCULOI.E.T.I – www.rodrivelp.blogspot.com 𝑥= −𝑏 ± √𝑏2 − 4𝑎𝑐 2𝑎 𝑥 = −4 ± √42 − 4(1)(3) 2(1) 𝑥 = −4 ± √16 − 12 2 𝑥 = −4 ± √4 2 𝑥 = −4 ± 2 2 x = −1 x = −3 (-1,0) y (-3,0) PUNTOS DE CORTE DE LA PARÁBOLA CON EL EJE Y Lo podemos hacer reemplazando por cero las equis de la función. Ejemplo: Hallar el punto de corte con el eje Y de la función f(x) = x2 + 4x + 3 Solución: Reemplazamos x por cero F(0) = 02 + 4(0) + 3 F(0) = 3 (0,3) Operación innecesaria puesto que se puede deducir directamente de la ecuación, simplemente observando el término independiente c=3 VÉRTICE DE LA PARÁBOLA Lo podemos hacer reemplazando los valores de a, b y c en: 𝑉 = ( −𝑏 2𝑎 , 4𝑎𝑐 − 𝑏2 4𝑎 ) Ejemplo: Hallar las coordenadas del vértice de la función f(x) = x2 + 4x + 3 Solución:
  • 5.
    5 CALCULOI.E.T.I – www.rodrivelp.blogspot.com Reemplazamoslos coeficientes: a = 1, b = 4, c = 3 𝑉 = ( −4 2(1) , 4(1)(3)− 42 4(1) ) 𝑉 = ( −4 2 , 12 − 16 4 ) 𝑽 = (−𝟐, −𝟏) Las coordenadas del vértice y los puntos de corte con los ejes X y Y los resumimos en una gráfica en el plano cartesiano: NOTA: Se recomienda tener claros los conceptos de factorización de ecuaciones de las formas: f(x) = x2 + bx + c y f(x) = ax2 + 4x + 3 El siguiente diagrama muestra mediante un ejemplo particular cada uno de los casos posibles en una función cuadrática. El objetivo principal es la de identificar y diferenciar, en el menor tiempo posible y con las menores operaciones posibles, dichos casos y pueda desempeñar un papel importante en las pruebas. En los vídeos seleccionados se tratará cada uno de los casos para que se observen los métodos propuestos de solución y se adquiera habilidad en su desarrollo.
  • 6.
    Función Cuadrática f(x) =ax2+bx+c Cóncava Hacia Arriba Si aes Positivo Con 2 Raíces f(x) = X2 Con 1 Raíz f(x) = X2-4X+4 Con 0 Raíces f(x) = X2-X-2 Cóncava Hacia Abajo Si aes Negativo Con 2 Raíces f(x) = -X2+4 Con 1 Raíz f(x) = -x^2+6x-9 Con 0 Raíces f(x) = -x^2+3x-4
  • 7.
    VÍDEOS EXPLICATIVOS GRÁFICA DEUNA FUNCIÓN CUADRÁTICA POR EL MÉTODO TRADICIONAL DE TABULACIÓN Tomado de Youtube en: https://youtu.be/heaetLBlraw F(x) = x2 – 2x -8 Recomendado para principiantes y no muy óptimo para presentación de pruebas… GRÁFICA DE UNA FUNCIÓN CUADRÁTICA CON DOS PUNTOS DE CORTE CON EL EJE X DE LA FORMA F(X) = x2 + bx + c F(x) = x2 – 4x - 12 POR EL MÉTODO DE FACTORIZACIÓN Tomado de Youtube en: https://youtu.be/QX7BbPE3Ym4 GRÁFICA DE UNA FUNCIÓN CUADRÁTICA CON DOS PUNTOS DE CORTE CON EL EJE X DE LA FORMA F(x) = ax2 + bx + c F(x) = 3x2 – 4x - 15 POR EL MÉTODO DE FACTORIZACIÓN Tomado de Youtube en: https://youtu.be/7dbODhcVo7A
  • 8.
    8 CALCULOI.E.T.I – www.rodrivelp.blogspot.com GRÁFICADE UNA FUNCIÓN CUADRÁTICA CON DOS PUNTOS DE CORTE CON EL EJE X DE LA FORMA F(x) = ax2 + bx + c F(x) = -2x2 + 13x - 20 POR EL MÉTODO DE FORMULA GENERAL Tomado de Youtube en: https://youtu.be/v7_FFHPe5LE GRÁFICA DE UNA FUNCIÓN CUADRÁTICA CON UN SOLO PUNTO DE CORTE CON EL EJE X F(x) = x2 – 6x +9 Tomado de Youtube en: https://youtu.be/IAQ2CVjcW2I GRÁFICA DE UNA FUNCIÓN CUADRÁTICA SIN PUNTOS DE CORTE CON EL EJE X F(x) = x2 – 6x + 12 Tomado de Youtube en: https://youtu.be/qwptGCQqne0