Tutorial13 áreas de figuras planas
Upcoming SlideShare
Loading in...5
×
 

Tutorial13 áreas de figuras planas

on

  • 642 reproducciones

 

Statistics

reproducciones

Total Views
642
Views on SlideShare
642
Embed Views
0

Actions

Likes
0
Downloads
2
Comments
0

0 insertados 0

No embeds

Accesibilidad

Categorias

Detalles de carga

Uploaded via as Microsoft PowerPoint

Derechos de uso

© Todos los derechos reservados

Report content

Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
Publicar comentario
Edite su comentario

Tutorial13 áreas de figuras planas Tutorial13 áreas de figuras planas Presentation Transcript

  • Aplicar las reglas correspondientespara el calculo de áreas de figurasplanas. Licdo. Víctor Monsalve
  • Áreas de figuras planas Teorema. Dado un paralelogramo con base b y altura correspondiente h, el área A está dada por la formula A=b.h C B altura D C A altura B base base
  • Áreas de figuras planas Encuentre el área de cada paralelogramo. A=? 5 26
  • Áreas de figuras planas Encuentre el área de cada paralelogramo. Solución: A=? A=b.h 5 entonces: A=26.5 A=130 26
  • Áreas de figuras planas Encuentre el área de cada paralelogramo. h A=360 30
  • Áreas de figuras planas Encuentre el área de cada paralelogramo. Solución: h A=b.h A=360 360=30.h 360/30 =h 12=h 30
  • Áreas de figuras planas Encuentre el área de cada paralelogramo. D C h =11 A=143 A B ABCD es un rombo AD =?
  • Áreas de figuras planas Encuentre el área de cada paralelogramo. D C A=b.h 143= b.11 143/11=b h =11 13=b A=143 La base es 13, en consecuencia, como el A rombo tiene los lados B iguales tenemos que: AD=13 ABCD es un rombo AD =?
  • Áreas de triángulos y trapeciosTeorema.Dado un triángulo conbase b y alturacorrespondiente h, el áreaA está dada por la formulaA= ½.b.h J K A(∆HIJ)=1/2 A(HIKJ) A(∆HIJ)=1/2.b.h h H I
  • Áreas de triángulo y trapecioTeorema.Dado un trapecio con baseb1 y b2, y altura h, el áreaA esta dada por la fórmulaA= ½.h(b1+b2) b1 C b2 F D Base de l trapecio AEFD =b1+b2 A (el trapecio AEFD)= h.(b1+b2) h Entonces: A(el trapecio ABCD)=h.(b1+b2) Entonces: A(ABCD)=h.(b1+b2)/2A b2 B b1 E
  • Calcular las áreas de las regiones Solución: A=b.h 22 A=39.22 A=858 34
  • Calcular las áreas de las regiones Solución: 24 22 A=b.h A=24.22 A=528
  • Calcular las áreas de las regiones h(b1 b 2) A 20 2 A 16.(20 40) 16 2 A 16.(60) 40 2 A 480
  • Calcular las áreas de las regiones Calculamos el área de ADC 1.41 25 D A( ADC) . 2 2 A( ADC) 256,25 A C Debido de ∆(ADC)~∆(ABC) por criterio LAL, entonces el área de la región viene dada por: B ∆(ADC)+∆(ABC) 256,25+256,25=512,5 Entonces el área de las regiones es 512,5
  • Calcular el área de la región sombreada Calculamos el área de (∆AEG) A D 5.1 5 A( AEG) 25 2 2 5 Ahora calculamos el área G (∆DHF) H F 3.5 15E 1 3 A( DHF ) 7,5 2 2 4 B 5 C α
  • Calcular el área de la región sombreada Calculamos también : A D A(BGHC) A(BGHC)= 5.4=20 5 Entonces el área de la región sombreada es : G H F A= A(∆AEG)+A(∆ DHF)+A(BGHC)E 1 3 A= 2,5+7,5+20 4 A=30 B 5 C α
  • Área de polígono regularesEncuentre la apotema y el área de cadapolígono regular dado Solución. C A=1/2 .a.n.s apotema longitud Nº de lados A=1/2ª.30 A B 10 α
  • Área de polígono regulares Por teorema de Pitágoras calculamos la altura de triángulo a 2 10 2 5 2 a 2 100 25 a 2 75 C a 5. 3 Entonces el área del triángulo ABC a A( A B C) 10.5 3 25 3 2 Y la apotenusa la sacamos del A B 10 despeje de: 1 A .a . p 2 2A 2.25 3 50 3 5 a a 3 p 30 30 3
  • Área de polígono regulares 1 a .a.n.sEl área de un hexágono regular es 50 3 2 p n.s p 12cm ¿cuál es el perímetro y el apotema? 1 A .a. p 2 1 50 3 .a.12cm 2 2.50. 3 a 12cm 100 3 a 12 50 a 3 6 25 a 3 3