SlideShare una empresa de Scribd logo
1 de 4
Descargar para leer sin conexión
TRIGONOMETRÍA – QUINTO DE SECUNDARIA
1.   Calcular “x” de la figura:                                           11. Calcular :
     A) 15                                                                                                         π rad + 90°
     B) 16                                                                                                            π
     C) 18                                                                                                              rad
     D) 20                   2x
                                g    (26 – 3x)°                                                                      10
     E) 22                                                                     A) 5                       B) 10                       C) 15
                                         x°                                    D) 20        E) 25

2.   De la figura mostrada, calcular "10α − 9θ "                          12. En la figura:
     A) 90                                                                                                              B
     B) 180
                                                                                                                   3π
     C) 360
     D) 900                    θ
                               g
                                                                                                                    5   rad
                                α°
                                                                                                          g
     E) 1800                                                                                     20
                                                                                         A                                                    C
3.                           O
      Hallar “x”, en la figura:                                                ¿qué tipo de triángulo es?
     a) 1                                                                      A) Isósceles                             B) Equilátero
     b) 2                                                                      C) Rectángulo                            D) Obtusángulo
     c) 3                                                                      E) Acutángulo
     d) 4
     e) 5                                                                 13. Convertir al sistema sexagesimal

4.   Del gráfico, hallar “Tg θ”                                                A) 20g                     B) 30 g                     C) 50 g
     a) 1,2                                                                    D) 120 g                   E) 150 g
     b) 1,4
     c) 1,5                                                                                    30° + 30 g
     d) 2,1                                                               14. Calcular:          π
     e) 2,8                                                                                         rad
                                                                                                60
                                                                               A) 15                  B) 17                           C) 19
5.   Del gráfico, hallar “Tg α”                                                D) 21                  E) 23
     a) 1
     b) 2
                                                                                                π rad − 50 g
     c) 3                                                                 15. Calcular:
     d) 1/2                                                                                         45°
     e) 1/3                                                                    A) 3                   B) 5                            C) 9
                                                                               D) 7                   E) 11

6.   De la figura, hallar “ α ” en grados sexagesimales.                                       7π
                                                                                                  rad + 4°
                                                                          16. Reducir:         90
                                                     C                                             20°
     A) 61°                 B
                                                                               A) 0,1                     B) 0,4                      C) 0,7
     B) 63°
     C) 65°                                   α
                                              5    π                           D) 0,9                     E) 0,5
     D) 67°                     70g               rad
     E) 69°              A                    18 D                        17. Calcular:
                                                                                      π         150 g
7.   Convertir al sistema centesimal.                                                    rad +
                                                                                      90          9
        π                                 7π                     9π                      10 g
     A)    rad                      B)       rad            C)      rad
                                                                                          9
                                                                                              + 9°
        10                                20                     40
                                                                               A) 1,3                     B) 1,4                      C) 1,5
        11π                      π                                             D) 1,6                     E) 1,7
     D)     rad            E)       rad
         50                     100
                                                                          18. Calcular:
8.   Convertir al sistema sexagesimal                                                               12 πrad + 800 g
          π                              π                  5π                                       360° − πrad
     A)     rad                     B)     rad         C)      rad             A) 2         B) 4          C) 6          D) 8          E) 10
          3                              4                   6
          7π                    π                                         19. Convertir al sistema radial.
     D)      rad          E)       rad
          90                    30                                            A) 30°     B) 120°                        C) 18°
                                                                              D) 150° E) 160°
9.   Convertir al sistema radial
     A) 10 g               B) 50 g                 C) 100 g               20. Reducir:
     D) 120 g              E) 180 g                                                   11π
                                                                                          rad + 12°
                                                                                       60
10. Convertir al sistema centesimal.                                                      50 g
    A) 90°                B) 60°                   C) 120°                     A) 0 B) 1           C) 2          D) 3          E) 5
    D) 108°               E) 150°
21. Hallar “L”, de la figura:
                                                                                                                                     2m D
      A)   4π m                       20m
                                                                         29. Hallar:   AO    del gráfico:                        A
      B)   8π m                            rad              L
      C)   12 π m                                                              A)     1m                                                        7m
      D)   16 π m                                                              B)     2m          O             1 rad                 5m
           20 π m
                                           20m                                 C)     3m
      E)
                                                                               D)     4m
                                                                                                                                 B 2m C
22. Calcular (x–y), sabiendo que la longitud del arco AB es el triple          E)     5m
      de la del arco BE
      A)   1                                                            30. Hallar la longitud del arco CD.                                   D
                                                                         A                             D                             2m
      B)   2
                                                                            A) 4m         y                                  A
      C)   0
      D)   –1                                                               B) 5m         10°            3
                                                                                                         3m
                                                                     x      C) 6mB                                               3m
      E)   –2
                                                                            D) 7m E               O
                                                                    30°     E) 8m                         3m
                                                                                                                             B
                                                                                                                                     2m       C
                                                                C
23. Hallar “ θ ” en el gráfico
    A) 1                             8m
    B) 2                                                                 31. Hallar la longitud del arco CD                               2m D
                                                   24m                                                                                A
    C) 3                         rad
    D) 4                                                                       A)     10m
    E) 5                                                                       B)     12m
                                      8m                                       C)     14m                          2 rad                    8m
                                                                                                        O
                                                                               D)     16m
                                                                               E)     20m
                                                                                                                                      B 2m C
24. De la figura, hallar “L”:
    A) π m
    B) 2 π m                     16cm
                                                                         32. En un sector circular de radio (x+1)m de ángulo central x rad, y
    C) 3 π m                                            L
                                                                             la longitud de arco es (x+9)m,
    D) 4 π m                     45°                                         Hallar “x”.
    E) 5 π m                                                                 A) 1                  B) 2      C) 3      D) 4      E) 5
                                     16cm
                                                                         33. En la figura, hallar la longitud de AB.
                                                                                                                    A
25. Del gráfico, hallar “ α °                                                  A)     πm
    A) 0,5rad                        30m                                       B)     2π m

                                     α                                                3π m
    B) 0,4rad                                                                  C)                                12m                          B
                                                                                      4π m
                                                                                                                             α
    C) 0,3rad                                             6m                   D)                                        2
    D) 0,2rad
                                                                               E)     6π m
    E) 0,1rad                                                                                                       O                           C
                                          30m                                                                                    12m

                                                                         34. Una circunferencia tiene un radio de 30m. ¿Cuántos radianes
26. Dada la circunferencia de 24m de radio, encontrar la longitud del
                                                                             mide un ángulo central subtendido por un arco de 20m?
    arco que subtiende un ángulo central de 2/3 radianes.
                                                                                 1                       2                            3
                                                                               A)  rad                 B)  rad                   C)     rad
      A) 4m                 B) 8m                C) 12m                          2                       5                            2
      D) 16m                E) 20m                                               2                       4
                                                                               D) rad                  E) rad
                                                                                 3                       7
27. Calcular “R”.                    R
                                                                         35. Del gráfico, hallar “R”
      A)   12m
                                     rad           6m
      B)   14m                                                                 A)     50m
      C)   16m                                                                 B)     51m
      D)   18m                       R                                                                      R
                                                                               C)     52m                                                 24m
      E)   20m                                                                 D)     53m                        80°
                                                                               E)     54m
                                                                                                            R
28. Encontrar el radio de una circunferencia tal que un arco de 15m
                                                                                                     5
    de longitud, subtiende un ángulo central de 3rad.                    36. Si: θ es agudo y tg θ =    . Calcular:
                                                                                                     3
    A) 1m                 B) 2m                C) 3m
    D) 4m                 E) 5m                                                                      sen θ + cos θ
                                                                                                 M=
                                                                                                     sen θ − cos θ
                                                                             a) 1/2           b) 2                c
                                                                                                                  c) 4
d) 1/4                e) 3
                                                                        43. Hallar el perímetro del triángulo rectángulo mostrado. Sabiendo
37. Hallar “x”                                                              que: Tanθ = 3/4


                      x                                                                                       40

                                    53°       37°
                                               35                                              θ
    a) 40                 b) 50              c) 60
    d) 70                 e) 80                                             a) 48            b) 96             c) 120
                                                                            d) 80            e) 192
38. Si: Sen α = 0,5 . Calcular:                                                                        7
                A = Tg 2 α + 2Csc α + 3 Tg α                            44. Sabiendo que: Tan θ =
                                                                                                      24
                                                                            Evaluar la siguiente expresión:
    a) 15/2               b) 7/6             c) 8/3                                            Tan θ + C otθ + 2 C os θ
    d) 16/5               e) 16/3                                                                               −
                                                                                                Tan θ + C otθ      4
                     13
39. Si: Sec α =            ;                                                a) 0             b) 1              c) 2
                     5
                                                                            d) 3             e) 4
                     2 Sen α − 3C os α
    Calcular: A =
                      4Sen α − 9C os α                                  45. Si se cumple que:
                                                                                 Tg (a + b + 40º). Ctg (3a + b – 60º) = 1
    a) 1/2                b) 1/3             c) 2                           Halla el valor de “2a”
    d) 3                  e) N.a.                                           a) 20º b) 40º c) 60º d) 80º e) 100º

40. Hallar el ángulo agudo “x”; si:                                     46. Si se cumple que:
     1)      sen 20º. Csc x = 1                                                  Cos (x + y + 30º). Sec (3y + x – 10º) = 1
                                                                            Hallar l valor de “y”
     2)      Tg 4x. Ctg 40º = 1                                             a) 10º b) 20º c) 30º d) 40º e) 60º
     3)      Cos (3x + 20º). Sec 50º = 1
                                                                        47. Si:
     4)      Sen (2x – 10º). Csc (x + 30º) = 1                              Ctg (3m – n + 10º). Tg (n +m + 50º) + 31 = 32; además: m = 3n
     5)      Sen (2x + 5º). Cosec (21º) = 1                                 Hallar el valor de “m”
                                                                            a) 15º b) 18º c) 24º d) 30º e) 45º
     6)      Tg (15x – 31º). Ctg (3x – 25º) – 1 = 0
     7)      Cos (x + y + 20º). Sec (6x + y – 60º) = 1                  48. Si: Sen (x + y). Csc (2x – y) – 1 = 0
                                                                                 Sec (3x – y). Cos 100º = 1
                                                                            Hallar el valor de “x”
41. Calcular el valor de “x”; (x: agudo)                                    a) 20º b) 40º c) 60º d) 70º e) 100º

     8)      Sen 80º = Cos x                                            49. Siendo:         Tg (α + 10º) = Ctg (α + 40º)
     9)      Tg 70º = Ctg x                                                 El valor de “α” es:
                                                                            a) 20º b) 25º       c) 30º     d) 36º    e) 40º
     10) Sec 2x = Csc 70º
     11) Sen 3x = Cos 2x                                                50. Si: en (3x – 20º). Sec (2x + 95º) = 1
                                                                            Hallar el valor de “x”
     12) Cos 2x = Sen (30º + x)                                             a) 1º b) 2º c) 3º d) 4º e) 5º
     13) Tg (45º + x) = Ctg x
     14) Sec 45º = Csc 5x                                               51. Si: Tg ( x + y + 60º ).Tg ( x − y + 10º ) − 1 = 0
                                                                                 Calcular el valor de “x”
                                                                            a) 10º b) 20º c) 50º d) 80º e) 100º
42. Del triángulo rectángulo mostrado, calcular la tangente del mayor
                                                                        52. Si: Sen 2x. Sec 4y = 1
    ángulo agudo.
                                                                                 x – y = 15º
                                                                            Hallar el valor de “y”
                                 3x- 2                                      a) 10º b) 15º c) 20º           d) 30º     e) 50º
                                                      x
                                                                                       3kx α   α 3ky 
                                                                        53. Si: Tg        −  .Tg  −     =1
                                                                                       4   3 3      4 
                                                                                                         
                                    2x + 2                                    Además: x – y = 10º. Calcular “k”
                                                                              a) 4  b) 6 c) 10 d) 12 e) 20
    a) 2,5                b) 2,4             c) 2,1
    d) 3                  e) 3,5                                        54. Si: sen 40º. Sen 3x = Cos 50º. Cos 60º
                                                                            Calcular “x”
                                                                            a) 10º b) 8º c) 6º d) 4º e) 2º
55. Si:                                                                 65. Calcular:
             Sen (3α + β + 20º) = cos(- 2α - 2β + 16º) y secα = cscβ.
        Calcular el valor de “2β”                                                          ( Sec 53 o − Sen 53 o ) (Tg 37 o − Ctg 37 o )
                                                                                      M=                      o            o
        a) 9º b) 18º c) 72º d) 36º e) 100º                                                             Sen 30 + Cos 60

56. Sea:                                                                     a) 37/180           b) –37/180            c) –91/180
                                               9θ                          d) 91/180           e) 12/121
                         sen3θ . cos 6θ . csc 
                F( θ ) =                       2 
                                                                        66. Simplifica:
                                             9θ 
                          tg3θ . sec 6θ cot 
                                             2                                                   π       π    π     π
                                                                                              Sen    .Sec 2 + Tg .Ctg
    Encontrar: F(10º)                                                                              6       4    6     3
                                                                                         E=
                                                                                                      π      π    2 π
                                                                                                  Cos .Csc + Ctg
                                                                                                      4      4      3
57. Hallar el valor de:
                                     1            1                          a) 1       b) 1/3        c) 4/3
                         Sen 2 30º + Csc 4 60º + Sec3 60º
                                     2           36                          d) 2/3     e) 1/2
                R=
                                 4 π       2 π        π
                            Ctg      + Sec     + 3 Tg
                                   6         4        4
        a) 1/12 b) 7/12 c) 5/12            d) 12         e) 11/12

58. Calcular “Tg θ” (θ: agudo); el cual cumple:
                                      Sen 37º +Tg 45º
                          Sen θ =
                                         8. Sen 30º

                         2Sen 30º +Tg 45º
59. Si: Tg θ =
                         Sec 2 60º +Csc 2 45º
              Hallar: Senθ. Cosθ
        a) 1/10 b) 10 /10 c) 1/5 d) 3/10 e) 2/5

60. Calcular el valor de “E”; si:
                                               2                    2
                       π       π         π       π
                   Sen 3 + Cos 4  +  Sen 4 − Sen 3 
                E=                                 
                                 2 π      2 π
                             Csc . Cos
                                   3        6
        a) 1/2 b) 3/4 c) 5/2 d) 2/5                e) N.A.

61. Si: Sen (x + 15º) = Cos (y + 5º) ….. (1)
    Tg (50º + y) = Tg x…………………. (2)
    Calcular:
                         R = Cos x + Sen 3y
                                           1
        a) 1      b) 2    c)   2      d)            e)     3
                                           2
62. Calcular “x si:
                                   Sen 3x = Cos 2x
        a) 10              b) 15                 c) 18
        d) 20              e) 25

63. Calcular “X” si:
                               Tg 5x = Ctg (2x+20)
        a) 5               b) 10                c) 15
        d) 20              e) 25

64. Calcula “X” si:
                               Sen 3x. Sec 54°=1

a) 10                      b) 11                         c) 12
d) 13                      e) 14

Más contenido relacionado

La actualidad más candente (18)

Fracciones 1
Fracciones 1Fracciones 1
Fracciones 1
 
Semana 6 cs
Semana 6 csSemana 6 cs
Semana 6 cs
 
Razones trigonometricas de angulos notables
Razones trigonometricas de angulos notablesRazones trigonometricas de angulos notables
Razones trigonometricas de angulos notables
 
Actividad 1 geometria triangulos 2013
Actividad 1 geometria  triangulos 2013Actividad 1 geometria  triangulos 2013
Actividad 1 geometria triangulos 2013
 
Semana 2 cs
Semana 2 csSemana 2 cs
Semana 2 cs
 
2 triángulos....3°
2 triángulos....3°2 triángulos....3°
2 triángulos....3°
 
Trigonometria 16
Trigonometria 16Trigonometria 16
Trigonometria 16
 
Razones trigonométricas de un ángulo agudo
Razones  trigonométricas de  un  ángulo  agudoRazones  trigonométricas de  un  ángulo  agudo
Razones trigonométricas de un ángulo agudo
 
Cuadrilateros repaso
Cuadrilateros repasoCuadrilateros repaso
Cuadrilateros repaso
 
Concurso interno de matemática 2010
Concurso interno de matemática 2010Concurso interno de matemática 2010
Concurso interno de matemática 2010
 
Angulos en la circunferencia
Angulos en la circunferenciaAngulos en la circunferencia
Angulos en la circunferencia
 
Trigonometria 12
Trigonometria 12Trigonometria 12
Trigonometria 12
 
Guía geometría 2
Guía geometría 2 Guía geometría 2
Guía geometría 2
 
Semana 5 cs
Semana 5 csSemana 5 cs
Semana 5 cs
 
Taller de vectores 1
Taller de vectores 1Taller de vectores 1
Taller de vectores 1
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorial
 
Ensayo psu geometría
Ensayo psu geometríaEnsayo psu geometría
Ensayo psu geometría
 
áNgulos separat 3°
áNgulos separat 3°áNgulos separat 3°
áNgulos separat 3°
 

Similar a Trigonometría - Quinto de secundaria

Trigonometría cuarto año de secundaria
Trigonometría   cuarto año de secundariaTrigonometría   cuarto año de secundaria
Trigonometría cuarto año de secundariacjperu
 
Trigonometría cuarto año de secundaria
Trigonometría   cuarto año de secundariaTrigonometría   cuarto año de secundaria
Trigonometría cuarto año de secundariacjperu
 
Balotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccionBalotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccionkarlosnunezh
 
Practica 1 de trigonometria sistemas de medida angular seleccion
Practica 1 de trigonometria sistemas de medida angular seleccionPractica 1 de trigonometria sistemas de medida angular seleccion
Practica 1 de trigonometria sistemas de medida angular seleccionKarlos Dieter Nunez Huayapa
 
Actividad 3 geometria congruencia de triangulos 2013 sin claves
Actividad 3 geometria  congruencia de triangulos 2013 sin clavesActividad 3 geometria  congruencia de triangulos 2013 sin claves
Actividad 3 geometria congruencia de triangulos 2013 sin clavesKarlos Dieter Nunez Huayapa
 
Triangulos enero 2011[1]
Triangulos enero 2011[1]Triangulos enero 2011[1]
Triangulos enero 2011[1]Geofi Cheros
 
Actividad 2 geometria lineas notables en los triangulos 2013
Actividad 2 geometria  lineas notables en los triangulos 2013Actividad 2 geometria  lineas notables en los triangulos 2013
Actividad 2 geometria lineas notables en los triangulos 2013Karlos Dieter Nunez Huayapa
 
Guia de ejercicios trigonometría
Guia de ejercicios trigonometríaGuia de ejercicios trigonometría
Guia de ejercicios trigonometríacristianacuna
 
Ejerciciospropuesto Sangulos
Ejerciciospropuesto SangulosEjerciciospropuesto Sangulos
Ejerciciospropuesto SangulosJuan Perez
 

Similar a Trigonometría - Quinto de secundaria (20)

Trigonometría cuarto año de secundaria
Trigonometría   cuarto año de secundariaTrigonometría   cuarto año de secundaria
Trigonometría cuarto año de secundaria
 
Trigonometría cuarto año de secundaria
Trigonometría   cuarto año de secundariaTrigonometría   cuarto año de secundaria
Trigonometría cuarto año de secundaria
 
Balotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccionBalotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccion
 
Balotario de geometria abril 2013
Balotario de geometria abril 2013Balotario de geometria abril 2013
Balotario de geometria abril 2013
 
1º examen formativo ;2013 i
1º examen formativo ;2013   i1º examen formativo ;2013   i
1º examen formativo ;2013 i
 
1º examen formativo ;2013 i
1º examen formativo ;2013   i1º examen formativo ;2013   i
1º examen formativo ;2013 i
 
Trigo & Geo
Trigo & GeoTrigo & Geo
Trigo & Geo
 
Practica 1 de trigonometria sistemas de medida angular seleccion
Practica 1 de trigonometria sistemas de medida angular seleccionPractica 1 de trigonometria sistemas de medida angular seleccion
Practica 1 de trigonometria sistemas de medida angular seleccion
 
Examen formativo
Examen formativoExamen formativo
Examen formativo
 
Actividad 3 geometria congruencia de triangulos 2013 sin claves
Actividad 3 geometria  congruencia de triangulos 2013 sin clavesActividad 3 geometria  congruencia de triangulos 2013 sin claves
Actividad 3 geometria congruencia de triangulos 2013 sin claves
 
1º examen formativo 2012 iii
1º examen formativo 2012 iii1º examen formativo 2012 iii
1º examen formativo 2012 iii
 
Triangulos enero 2011[1]
Triangulos enero 2011[1]Triangulos enero 2011[1]
Triangulos enero 2011[1]
 
Circunferencia
CircunferenciaCircunferencia
Circunferencia
 
Actividad 2 geometria lineas notables en los triangulos 2013
Actividad 2 geometria  lineas notables en los triangulos 2013Actividad 2 geometria  lineas notables en los triangulos 2013
Actividad 2 geometria lineas notables en los triangulos 2013
 
Quinto Grado 2003
Quinto Grado 2003Quinto Grado 2003
Quinto Grado 2003
 
Guia de ejercicios trigonometría
Guia de ejercicios trigonometríaGuia de ejercicios trigonometría
Guia de ejercicios trigonometría
 
Ejerciciospropuesto Sangulos
Ejerciciospropuesto SangulosEjerciciospropuesto Sangulos
Ejerciciospropuesto Sangulos
 
Semana 1 cs
Semana 1 csSemana 1 cs
Semana 1 cs
 
Balotario de trigonometria marzo 2013
Balotario de trigonometria marzo 2013Balotario de trigonometria marzo 2013
Balotario de trigonometria marzo 2013
 
Ficha angulos 2do sec
Ficha angulos 2do secFicha angulos 2do sec
Ficha angulos 2do sec
 

Más de cjperu

Ángulos 2º sec
Ángulos 2º secÁngulos 2º sec
Ángulos 2º seccjperu
 
Teoría de exponentes ec. exponenciales
Teoría de exponentes   ec. exponencialesTeoría de exponentes   ec. exponenciales
Teoría de exponentes ec. exponencialescjperu
 
Prospecto 2016 unprg nueva estructura de examen
Prospecto 2016  unprg nueva estructura de examenProspecto 2016  unprg nueva estructura de examen
Prospecto 2016 unprg nueva estructura de examencjperu
 
Lógica
LógicaLógica
Lógicacjperu
 
Reducción al primer cuadrante 4º sec
Reducción al primer cuadrante   4º secReducción al primer cuadrante   4º sec
Reducción al primer cuadrante 4º seccjperu
 
Ecuaciones trigonometricas práctica
Ecuaciones trigonometricas   prácticaEcuaciones trigonometricas   práctica
Ecuaciones trigonometricas prácticacjperu
 
Ley de senos
Ley de senosLey de senos
Ley de senoscjperu
 
Ley de cosenos
Ley de cosenosLey de cosenos
Ley de cosenoscjperu
 
Logaritmos
LogaritmosLogaritmos
Logaritmoscjperu
 
Logaritmos
LogaritmosLogaritmos
Logaritmoscjperu
 
Desigualdades e Inecuaciones
Desigualdades e InecuacionesDesigualdades e Inecuaciones
Desigualdades e Inecuacionescjperu
 
Bases conamat2015
Bases conamat2015Bases conamat2015
Bases conamat2015cjperu
 
Logica proposicional ii
Logica proposicional iiLogica proposicional ii
Logica proposicional iicjperu
 
Lógica Proposicional
Lógica ProposicionalLógica Proposicional
Lógica Proposicionalcjperu
 
Álgebra pre
Álgebra preÁlgebra pre
Álgebra precjperu
 
Trigonometria
TrigonometriaTrigonometria
Trigonometriacjperu
 
Factorización
FactorizaciónFactorización
Factorizacióncjperu
 
Bingo Algebraico - 1º sec
Bingo Algebraico - 1º secBingo Algebraico - 1º sec
Bingo Algebraico - 1º seccjperu
 
Factorización fc - tcp - dc - as
Factorización   fc - tcp - dc - asFactorización   fc - tcp - dc - as
Factorización fc - tcp - dc - ascjperu
 
Robotica poleas
Robotica   poleasRobotica   poleas
Robotica poleascjperu
 

Más de cjperu (20)

Ángulos 2º sec
Ángulos 2º secÁngulos 2º sec
Ángulos 2º sec
 
Teoría de exponentes ec. exponenciales
Teoría de exponentes   ec. exponencialesTeoría de exponentes   ec. exponenciales
Teoría de exponentes ec. exponenciales
 
Prospecto 2016 unprg nueva estructura de examen
Prospecto 2016  unprg nueva estructura de examenProspecto 2016  unprg nueva estructura de examen
Prospecto 2016 unprg nueva estructura de examen
 
Lógica
LógicaLógica
Lógica
 
Reducción al primer cuadrante 4º sec
Reducción al primer cuadrante   4º secReducción al primer cuadrante   4º sec
Reducción al primer cuadrante 4º sec
 
Ecuaciones trigonometricas práctica
Ecuaciones trigonometricas   prácticaEcuaciones trigonometricas   práctica
Ecuaciones trigonometricas práctica
 
Ley de senos
Ley de senosLey de senos
Ley de senos
 
Ley de cosenos
Ley de cosenosLey de cosenos
Ley de cosenos
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Desigualdades e Inecuaciones
Desigualdades e InecuacionesDesigualdades e Inecuaciones
Desigualdades e Inecuaciones
 
Bases conamat2015
Bases conamat2015Bases conamat2015
Bases conamat2015
 
Logica proposicional ii
Logica proposicional iiLogica proposicional ii
Logica proposicional ii
 
Lógica Proposicional
Lógica ProposicionalLógica Proposicional
Lógica Proposicional
 
Álgebra pre
Álgebra preÁlgebra pre
Álgebra pre
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Factorización
FactorizaciónFactorización
Factorización
 
Bingo Algebraico - 1º sec
Bingo Algebraico - 1º secBingo Algebraico - 1º sec
Bingo Algebraico - 1º sec
 
Factorización fc - tcp - dc - as
Factorización   fc - tcp - dc - asFactorización   fc - tcp - dc - as
Factorización fc - tcp - dc - as
 
Robotica poleas
Robotica   poleasRobotica   poleas
Robotica poleas
 

Trigonometría - Quinto de secundaria

  • 1. TRIGONOMETRÍA – QUINTO DE SECUNDARIA 1. Calcular “x” de la figura: 11. Calcular : A) 15 π rad + 90° B) 16 π C) 18 rad D) 20 2x g (26 – 3x)° 10 E) 22 A) 5 B) 10 C) 15 x° D) 20 E) 25 2. De la figura mostrada, calcular "10α − 9θ " 12. En la figura: A) 90 B B) 180 3π C) 360 D) 900 θ g 5 rad α° g E) 1800 20 A C 3. O Hallar “x”, en la figura: ¿qué tipo de triángulo es? a) 1 A) Isósceles B) Equilátero b) 2 C) Rectángulo D) Obtusángulo c) 3 E) Acutángulo d) 4 e) 5 13. Convertir al sistema sexagesimal 4. Del gráfico, hallar “Tg θ” A) 20g B) 30 g C) 50 g a) 1,2 D) 120 g E) 150 g b) 1,4 c) 1,5 30° + 30 g d) 2,1 14. Calcular: π e) 2,8 rad 60 A) 15 B) 17 C) 19 5. Del gráfico, hallar “Tg α” D) 21 E) 23 a) 1 b) 2 π rad − 50 g c) 3 15. Calcular: d) 1/2 45° e) 1/3 A) 3 B) 5 C) 9 D) 7 E) 11 6. De la figura, hallar “ α ” en grados sexagesimales. 7π rad + 4° 16. Reducir: 90 C 20° A) 61° B A) 0,1 B) 0,4 C) 0,7 B) 63° C) 65° α 5 π D) 0,9 E) 0,5 D) 67° 70g rad E) 69° A 18 D 17. Calcular: π 150 g 7. Convertir al sistema centesimal. rad + 90 9 π 7π 9π 10 g A) rad B) rad C) rad 9 + 9° 10 20 40 A) 1,3 B) 1,4 C) 1,5 11π π D) 1,6 E) 1,7 D) rad E) rad 50 100 18. Calcular: 8. Convertir al sistema sexagesimal 12 πrad + 800 g π π 5π 360° − πrad A) rad B) rad C) rad A) 2 B) 4 C) 6 D) 8 E) 10 3 4 6 7π π 19. Convertir al sistema radial. D) rad E) rad 90 30 A) 30° B) 120° C) 18° D) 150° E) 160° 9. Convertir al sistema radial A) 10 g B) 50 g C) 100 g 20. Reducir: D) 120 g E) 180 g 11π rad + 12° 60 10. Convertir al sistema centesimal. 50 g A) 90° B) 60° C) 120° A) 0 B) 1 C) 2 D) 3 E) 5 D) 108° E) 150°
  • 2. 21. Hallar “L”, de la figura: 2m D A) 4π m 20m 29. Hallar: AO del gráfico: A B) 8π m rad L C) 12 π m A) 1m 7m D) 16 π m B) 2m O 1 rad 5m 20 π m 20m C) 3m E) D) 4m B 2m C 22. Calcular (x–y), sabiendo que la longitud del arco AB es el triple E) 5m de la del arco BE A) 1 30. Hallar la longitud del arco CD. D A D 2m B) 2 A) 4m y A C) 0 D) –1 B) 5m 10° 3 3m x C) 6mB 3m E) –2 D) 7m E O 30° E) 8m 3m B 2m C C 23. Hallar “ θ ” en el gráfico A) 1 8m B) 2 31. Hallar la longitud del arco CD 2m D 24m A C) 3 rad D) 4 A) 10m E) 5 B) 12m 8m C) 14m 2 rad 8m O D) 16m E) 20m B 2m C 24. De la figura, hallar “L”: A) π m B) 2 π m 16cm 32. En un sector circular de radio (x+1)m de ángulo central x rad, y C) 3 π m L la longitud de arco es (x+9)m, D) 4 π m 45° Hallar “x”. E) 5 π m A) 1 B) 2 C) 3 D) 4 E) 5 16cm 33. En la figura, hallar la longitud de AB. A 25. Del gráfico, hallar “ α ° A) πm A) 0,5rad 30m B) 2π m α 3π m B) 0,4rad C) 12m B 4π m α C) 0,3rad 6m D) 2 D) 0,2rad E) 6π m E) 0,1rad O C 30m 12m 34. Una circunferencia tiene un radio de 30m. ¿Cuántos radianes 26. Dada la circunferencia de 24m de radio, encontrar la longitud del mide un ángulo central subtendido por un arco de 20m? arco que subtiende un ángulo central de 2/3 radianes. 1 2 3 A) rad B) rad C) rad A) 4m B) 8m C) 12m 2 5 2 D) 16m E) 20m 2 4 D) rad E) rad 3 7 27. Calcular “R”. R 35. Del gráfico, hallar “R” A) 12m rad 6m B) 14m A) 50m C) 16m B) 51m D) 18m R R C) 52m 24m E) 20m D) 53m 80° E) 54m R 28. Encontrar el radio de una circunferencia tal que un arco de 15m 5 de longitud, subtiende un ángulo central de 3rad. 36. Si: θ es agudo y tg θ = . Calcular: 3 A) 1m B) 2m C) 3m D) 4m E) 5m sen θ + cos θ M= sen θ − cos θ a) 1/2 b) 2 c c) 4
  • 3. d) 1/4 e) 3 43. Hallar el perímetro del triángulo rectángulo mostrado. Sabiendo 37. Hallar “x” que: Tanθ = 3/4 x 40 53° 37° 35 θ a) 40 b) 50 c) 60 d) 70 e) 80 a) 48 b) 96 c) 120 d) 80 e) 192 38. Si: Sen α = 0,5 . Calcular: 7 A = Tg 2 α + 2Csc α + 3 Tg α 44. Sabiendo que: Tan θ = 24 Evaluar la siguiente expresión: a) 15/2 b) 7/6 c) 8/3 Tan θ + C otθ + 2 C os θ d) 16/5 e) 16/3 − Tan θ + C otθ 4 13 39. Si: Sec α = ; a) 0 b) 1 c) 2 5 d) 3 e) 4 2 Sen α − 3C os α Calcular: A = 4Sen α − 9C os α 45. Si se cumple que: Tg (a + b + 40º). Ctg (3a + b – 60º) = 1 a) 1/2 b) 1/3 c) 2 Halla el valor de “2a” d) 3 e) N.a. a) 20º b) 40º c) 60º d) 80º e) 100º 40. Hallar el ángulo agudo “x”; si: 46. Si se cumple que: 1) sen 20º. Csc x = 1 Cos (x + y + 30º). Sec (3y + x – 10º) = 1 Hallar l valor de “y” 2) Tg 4x. Ctg 40º = 1 a) 10º b) 20º c) 30º d) 40º e) 60º 3) Cos (3x + 20º). Sec 50º = 1 47. Si: 4) Sen (2x – 10º). Csc (x + 30º) = 1 Ctg (3m – n + 10º). Tg (n +m + 50º) + 31 = 32; además: m = 3n 5) Sen (2x + 5º). Cosec (21º) = 1 Hallar el valor de “m” a) 15º b) 18º c) 24º d) 30º e) 45º 6) Tg (15x – 31º). Ctg (3x – 25º) – 1 = 0 7) Cos (x + y + 20º). Sec (6x + y – 60º) = 1 48. Si: Sen (x + y). Csc (2x – y) – 1 = 0 Sec (3x – y). Cos 100º = 1 Hallar el valor de “x” 41. Calcular el valor de “x”; (x: agudo) a) 20º b) 40º c) 60º d) 70º e) 100º 8) Sen 80º = Cos x 49. Siendo: Tg (α + 10º) = Ctg (α + 40º) 9) Tg 70º = Ctg x El valor de “α” es: a) 20º b) 25º c) 30º d) 36º e) 40º 10) Sec 2x = Csc 70º 11) Sen 3x = Cos 2x 50. Si: en (3x – 20º). Sec (2x + 95º) = 1 Hallar el valor de “x” 12) Cos 2x = Sen (30º + x) a) 1º b) 2º c) 3º d) 4º e) 5º 13) Tg (45º + x) = Ctg x 14) Sec 45º = Csc 5x 51. Si: Tg ( x + y + 60º ).Tg ( x − y + 10º ) − 1 = 0 Calcular el valor de “x” a) 10º b) 20º c) 50º d) 80º e) 100º 42. Del triángulo rectángulo mostrado, calcular la tangente del mayor 52. Si: Sen 2x. Sec 4y = 1 ángulo agudo. x – y = 15º Hallar el valor de “y” 3x- 2 a) 10º b) 15º c) 20º d) 30º e) 50º x  3kx α   α 3ky  53. Si: Tg  −  .Tg  − =1  4 3 3 4   2x + 2 Además: x – y = 10º. Calcular “k” a) 4 b) 6 c) 10 d) 12 e) 20 a) 2,5 b) 2,4 c) 2,1 d) 3 e) 3,5 54. Si: sen 40º. Sen 3x = Cos 50º. Cos 60º Calcular “x” a) 10º b) 8º c) 6º d) 4º e) 2º
  • 4. 55. Si: 65. Calcular: Sen (3α + β + 20º) = cos(- 2α - 2β + 16º) y secα = cscβ. Calcular el valor de “2β” ( Sec 53 o − Sen 53 o ) (Tg 37 o − Ctg 37 o ) M= o o a) 9º b) 18º c) 72º d) 36º e) 100º Sen 30 + Cos 60 56. Sea: a) 37/180 b) –37/180 c) –91/180  9θ  d) 91/180 e) 12/121 sen3θ . cos 6θ . csc  F( θ ) =  2  66. Simplifica:  9θ  tg3θ . sec 6θ cot   2  π π π π Sen .Sec 2 + Tg .Ctg Encontrar: F(10º) 6 4 6 3 E= π π 2 π Cos .Csc + Ctg 4 4 3 57. Hallar el valor de: 1 1 a) 1 b) 1/3 c) 4/3 Sen 2 30º + Csc 4 60º + Sec3 60º 2 36 d) 2/3 e) 1/2 R= 4 π 2 π π Ctg + Sec + 3 Tg 6 4 4 a) 1/12 b) 7/12 c) 5/12 d) 12 e) 11/12 58. Calcular “Tg θ” (θ: agudo); el cual cumple: Sen 37º +Tg 45º Sen θ = 8. Sen 30º 2Sen 30º +Tg 45º 59. Si: Tg θ = Sec 2 60º +Csc 2 45º Hallar: Senθ. Cosθ a) 1/10 b) 10 /10 c) 1/5 d) 3/10 e) 2/5 60. Calcular el valor de “E”; si: 2 2  π π  π π  Sen 3 + Cos 4  +  Sen 4 − Sen 3  E=    2 π 2 π Csc . Cos 3 6 a) 1/2 b) 3/4 c) 5/2 d) 2/5 e) N.A. 61. Si: Sen (x + 15º) = Cos (y + 5º) ….. (1) Tg (50º + y) = Tg x…………………. (2) Calcular: R = Cos x + Sen 3y 1 a) 1 b) 2 c) 2 d) e) 3 2 62. Calcular “x si: Sen 3x = Cos 2x a) 10 b) 15 c) 18 d) 20 e) 25 63. Calcular “X” si: Tg 5x = Ctg (2x+20) a) 5 b) 10 c) 15 d) 20 e) 25 64. Calcula “X” si: Sen 3x. Sec 54°=1 a) 10 b) 11 c) 12 d) 13 e) 14