SlideShare una empresa de Scribd logo
1 de 2
TEORÍA DE EXPONENTES
1. Efectuar:
P =
294
336
30.14.15
80.35.21
2. Ordenar en forma decreciente:
A =
432
1 B =
413
2 C =
241
3
D =
123
4 E =
231
4
3. Simplificar:
R =
7
2
7
3
7
2
7
1
2
1
4.
4
1
2.)9(.)2( 












4. Hallar el valor de “M”:
M =







 
b
2a
2
2









2b
a
2
2
5. Reducir:
P =
4
5074
)2(
6. Calcular:
A =
144 208
2.24

7. Hallar el valor de W:
W =
1249
12412
894



8. Hallar el valor de:
2n
1n2nn
2
222



9. Al simplificar:
n n n22n32
n n n2n2
xx
xx


el exponente de x es:
10. Sabiendo que:
E =
2x
5
5.220
20
2x2x22x
1x 








 

Hallar E3
11. Simplificar:
T = 4
m
m
811
811



12. Calcular el valor reducido de la expresión “N”:
N = a
aaa
aaa
1286
432



13. Reducir:
P =
  

  

v eces"n"
8m
n mn mn mn m
f actores)6m(
2m2m2m2m
xx.x.x
xx.x.x









14. Simplificar:
E =
8 5 3 904 3517
4 8 7533 5 60
x.x.x.x
x.x.x.x
Dar como respuesta el exponente de x:
15. Reducir:
  


  

radicales)1a(
a
a a
a
sumandos"n"
a a
a
a
a
a aaa
a
)factoresn(aaa


16. Si: Q =
7 7 7 333
radicalesxxx 
P = 5 5 5 333
radicalesxxx  
Calcular: P + Q
17. Resolver:
3x91x53
273


18. Hallar x, si:
73x–2
+ 72
= 50
19. Hallar “x” en:
3
1
9
1x98


20. Calcular el valor de “x” en:
3x–3
+ 3x–2
+ 3x–1
= 39
21. Sabiendo que: 2x–3 = 3
Hallar: 21–x
22. Hallar “p” que cumple:
16
9
3
4
.
4
3
1p







23. Si n  N y además:
  

  

v eces10
v eces81
360360360
81..81.81.81
nnn 
= 8181
24. Si xy
= 2, calcular:
2y
2y
y
3
y
yx
4.x.x























25. Calcular el valor de xy, si:
8y
= 4 
3
27
27
3
= xx
26. Si se cumple:
6x
x = 6, calcular x
27. Si se cumple:
x
1
x = 2
calcular: x
28. Sea:
2x
x = 5
Hallar:
x2
x
x 




29. Si x
x = 3,
calcular: E = x1xx
x 
30. Resolver:
0724933xx
3x


31. Si
2
1
x
x
x2
x

simplificar:
x2x 1xxx)x2(
x

32. Sabiendo que: aa
= 2, calcular:
3
a
1
aaaa2a
a







 
33. Simplificar:
E =
1
9
1
9
1
veces8
9
1
9
1
9
1
veces8
9
1
9
1
9
1
9
1
9
1
































































  

  

34. Simplificar:
M =
4 4 4
7 7 7 444
radicx.x.x
radicxxx




35. Simplificar:
W =
1x1x1x
x1x2x
333
3.23.123.27




36. Si 4x
– 4x–1
= 24, halla el valor de (2x)x
.
37. Calcular el valor de “x” si:
3 –






2
3
2
3
2
3
xxx
38. Para qué valor de “n” se cumple que:
81 3n27 2n9 1n3 n
812793 


Más contenido relacionado

La actualidad más candente

Balotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccionBalotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccionkarlosnunezh
 
Distacia entre puntos yumpe ++
Distacia entre puntos yumpe ++Distacia entre puntos yumpe ++
Distacia entre puntos yumpe ++MIGUEL INTI
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)George Montenegro
 
Semana 3 cs numeracion i
Semana 3 cs numeracion iSemana 3 cs numeracion i
Semana 3 cs numeracion iFranco Choque
 
Notación Exponencial y Científica
Notación Exponencial y CientíficaNotación Exponencial y Científica
Notación Exponencial y CientíficaEl Gran Amauta
 
Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentesLeoncito Salvaje
 
Tema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angularesTema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angularesWilder Salazar
 
Teoria y problemas de progresiones geometricas pg58 ccesa007
Teoria y problemas de progresiones  geometricas  pg58  ccesa007Teoria y problemas de progresiones  geometricas  pg58  ccesa007
Teoria y problemas de progresiones geometricas pg58 ccesa007Demetrio Ccesa Rayme
 
Ejercicios de fisica analisis dimensional
Ejercicios de fisica analisis dimensionalEjercicios de fisica analisis dimensional
Ejercicios de fisica analisis dimensionalFQM-Project
 
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOSRAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOSEDWIN RONALD CRUZ RUIZ
 
Taller de progresiones geometricas
Taller de progresiones geometricasTaller de progresiones geometricas
Taller de progresiones geometricasReymundo Salcedo
 
Semana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triplesSemana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triplesRodolfo Carrillo Velàsquez
 
Relaciones metricas en el triangulo rectangulo (2) (1)
Relaciones metricas en el triangulo rectangulo (2) (1)Relaciones metricas en el triangulo rectangulo (2) (1)
Relaciones metricas en el triangulo rectangulo (2) (1)Silvia Chavez
 
Semana 1 teoria de exponentes - 4° escolar - 2015
Semana 1   teoria de exponentes - 4° escolar - 2015Semana 1   teoria de exponentes - 4° escolar - 2015
Semana 1 teoria de exponentes - 4° escolar - 2015Alexander Puicon Salazar
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSCliffor Jerry Herrera Castrillo
 

La actualidad más candente (20)

Balotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccionBalotario de geometria abril 2013 seleccion
Balotario de geometria abril 2013 seleccion
 
Distacia entre puntos yumpe ++
Distacia entre puntos yumpe ++Distacia entre puntos yumpe ++
Distacia entre puntos yumpe ++
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
 
Ecuaciones exponenciales
 Ecuaciones exponenciales  Ecuaciones exponenciales
Ecuaciones exponenciales
 
Semana 3 cs numeracion i
Semana 3 cs numeracion iSemana 3 cs numeracion i
Semana 3 cs numeracion i
 
Tema 4 productos notables
Tema 4   productos notablesTema 4   productos notables
Tema 4 productos notables
 
Notación Exponencial y Científica
Notación Exponencial y CientíficaNotación Exponencial y Científica
Notación Exponencial y Científica
 
Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentes
 
Tema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angularesTema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angulares
 
Teoria y problemas de progresiones geometricas pg58 ccesa007
Teoria y problemas de progresiones  geometricas  pg58  ccesa007Teoria y problemas de progresiones  geometricas  pg58  ccesa007
Teoria y problemas de progresiones geometricas pg58 ccesa007
 
Ejercicios de fisica analisis dimensional
Ejercicios de fisica analisis dimensionalEjercicios de fisica analisis dimensional
Ejercicios de fisica analisis dimensional
 
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOSRAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
 
Taller de progresiones geometricas
Taller de progresiones geometricasTaller de progresiones geometricas
Taller de progresiones geometricas
 
Algebra semana 3-solucion
Algebra   semana 3-solucionAlgebra   semana 3-solucion
Algebra semana 3-solucion
 
Actividad 8 circunferencia trigonometrica
Actividad 8 circunferencia trigonometricaActividad 8 circunferencia trigonometrica
Actividad 8 circunferencia trigonometrica
 
Semana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triplesSemana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triples
 
Relaciones metricas en el triangulo rectangulo (2) (1)
Relaciones metricas en el triangulo rectangulo (2) (1)Relaciones metricas en el triangulo rectangulo (2) (1)
Relaciones metricas en el triangulo rectangulo (2) (1)
 
4to sec ficha 1
4to sec   ficha 14to sec   ficha 1
4to sec ficha 1
 
Semana 1 teoria de exponentes - 4° escolar - 2015
Semana 1   teoria de exponentes - 4° escolar - 2015Semana 1   teoria de exponentes - 4° escolar - 2015
Semana 1 teoria de exponentes - 4° escolar - 2015
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
 

Destacado

Teoría de exponentes
Teoría de exponentesTeoría de exponentes
Teoría de exponentesPELVIS
 
Desigualdades e Inecuaciones
Desigualdades e InecuacionesDesigualdades e Inecuaciones
Desigualdades e Inecuacionescjperu
 
Logaritmos
LogaritmosLogaritmos
Logaritmoscjperu
 
Logica proposicional ii
Logica proposicional iiLogica proposicional ii
Logica proposicional iicjperu
 
U2 s1 leyes de exponentes
U2 s1   leyes de exponentesU2 s1   leyes de exponentes
U2 s1 leyes de exponentesluisdiego419
 
Trigonometría cuarto año de secundaria
Trigonometría   cuarto año de secundariaTrigonometría   cuarto año de secundaria
Trigonometría cuarto año de secundariacjperu
 
TEORIA DE EXPONENTES Y RADICALES
TEORIA DE EXPONENTES Y RADICALESTEORIA DE EXPONENTES Y RADICALES
TEORIA DE EXPONENTES Y RADICALESFrancisco Contreras
 
Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)Christiam3000
 
Reducción al primer cuadrante 4º sec
Reducción al primer cuadrante   4º secReducción al primer cuadrante   4º sec
Reducción al primer cuadrante 4º seccjperu
 
Conamat - 4º de Primaria - Grupo 1
Conamat - 4º de Primaria - Grupo 1Conamat - 4º de Primaria - Grupo 1
Conamat - 4º de Primaria - Grupo 1cjperu
 
Refuerzo trigonometría 4°
Refuerzo trigonometría    4°Refuerzo trigonometría    4°
Refuerzo trigonometría 4°cjperu
 
Ejercicios curso 9 5
Ejercicios  curso 9 5Ejercicios  curso 9 5
Ejercicios curso 9 5Wils Mat
 
Factorizacion ejercicios varios
Factorizacion ejercicios variosFactorizacion ejercicios varios
Factorizacion ejercicios varioscjperu
 
Separata 01 teoria de expònentes
Separata 01 teoria de expònentesSeparata 01 teoria de expònentes
Separata 01 teoria de expònentesClaudia Velande
 
Ángulos 2º sec
Ángulos 2º secÁngulos 2º sec
Ángulos 2º seccjperu
 
Logaritmos
LogaritmosLogaritmos
Logaritmoscjperu
 

Destacado (20)

Teoría de exponentes
Teoría de exponentesTeoría de exponentes
Teoría de exponentes
 
Desigualdades e Inecuaciones
Desigualdades e InecuacionesDesigualdades e Inecuaciones
Desigualdades e Inecuaciones
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Logica proposicional ii
Logica proposicional iiLogica proposicional ii
Logica proposicional ii
 
U2 s1 leyes de exponentes
U2 s1   leyes de exponentesU2 s1   leyes de exponentes
U2 s1 leyes de exponentes
 
Trigonometría cuarto año de secundaria
Trigonometría   cuarto año de secundariaTrigonometría   cuarto año de secundaria
Trigonometría cuarto año de secundaria
 
Solución práctica 5 teoría de exponentes (2)
Solución práctica 5 teoría de exponentes (2)Solución práctica 5 teoría de exponentes (2)
Solución práctica 5 teoría de exponentes (2)
 
Leyes de exponentes
Leyes de exponentesLeyes de exponentes
Leyes de exponentes
 
TEORIA DE EXPONENTES Y RADICALES
TEORIA DE EXPONENTES Y RADICALESTEORIA DE EXPONENTES Y RADICALES
TEORIA DE EXPONENTES Y RADICALES
 
Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)Leyes de exponentes (resueltos)
Leyes de exponentes (resueltos)
 
Reducción al primer cuadrante 4º sec
Reducción al primer cuadrante   4º secReducción al primer cuadrante   4º sec
Reducción al primer cuadrante 4º sec
 
Conamat - 4º de Primaria - Grupo 1
Conamat - 4º de Primaria - Grupo 1Conamat - 4º de Primaria - Grupo 1
Conamat - 4º de Primaria - Grupo 1
 
Refuerzo trigonometría 4°
Refuerzo trigonometría    4°Refuerzo trigonometría    4°
Refuerzo trigonometría 4°
 
010
010010
010
 
Ejercicios curso 9 5
Ejercicios  curso 9 5Ejercicios  curso 9 5
Ejercicios curso 9 5
 
Factorizacion ejercicios varios
Factorizacion ejercicios variosFactorizacion ejercicios varios
Factorizacion ejercicios varios
 
Teoría de exponentes formulario
Teoría de exponentes  formularioTeoría de exponentes  formulario
Teoría de exponentes formulario
 
Separata 01 teoria de expònentes
Separata 01 teoria de expònentesSeparata 01 teoria de expònentes
Separata 01 teoria de expònentes
 
Ángulos 2º sec
Ángulos 2º secÁngulos 2º sec
Ángulos 2º sec
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 

Similar a Teoría de exponentes ec. exponenciales

Ecuaciones de expone
Ecuaciones de exponeEcuaciones de expone
Ecuaciones de exponecadc
 
Semana 9 identidades trigonometricas de angulos dobles
Semana 9 identidades trigonometricas de angulos doblesSemana 9 identidades trigonometricas de angulos dobles
Semana 9 identidades trigonometricas de angulos doblesRodolfo Carrillo Velàsquez
 
ALGEBRA AREA A.pdf
ALGEBRA AREA A.pdfALGEBRA AREA A.pdf
ALGEBRA AREA A.pdfNicolibaez4
 
Seminario basutel esup1
Seminario basutel esup1Seminario basutel esup1
Seminario basutel esup1Jose Quintana
 
Productos Notables
Productos NotablesProductos Notables
Productos Notablescjperu
 
Ecuaciones grado2 blog
Ecuaciones grado2 blogEcuaciones grado2 blog
Ecuaciones grado2 blogMarta Martín
 
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptx
6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptxkarina ivett martinez
 

Similar a Teoría de exponentes ec. exponenciales (20)

Algebra 3 ro. (reparado)
Algebra 3 ro. (reparado)Algebra 3 ro. (reparado)
Algebra 3 ro. (reparado)
 
Ecuaciones de expone
Ecuaciones de exponeEcuaciones de expone
Ecuaciones de expone
 
Refuercito de álgebra
Refuercito de álgebraRefuercito de álgebra
Refuercito de álgebra
 
Algebra ceprevi ccesa007
Algebra ceprevi ccesa007Algebra ceprevi ccesa007
Algebra ceprevi ccesa007
 
Leyes de exponentes whatsmath
Leyes de exponentes whatsmathLeyes de exponentes whatsmath
Leyes de exponentes whatsmath
 
Teoria de exponente
Teoria de exponenteTeoria de exponente
Teoria de exponente
 
Semana 9 identidades trigonometricas de angulos dobles
Semana 9 identidades trigonometricas de angulos doblesSemana 9 identidades trigonometricas de angulos dobles
Semana 9 identidades trigonometricas de angulos dobles
 
ALGEBRA AREA A.pdf
ALGEBRA AREA A.pdfALGEBRA AREA A.pdf
ALGEBRA AREA A.pdf
 
Practica16 productos notables ii solucion tipeada
Practica16 productos notables ii solucion tipeadaPractica16 productos notables ii solucion tipeada
Practica16 productos notables ii solucion tipeada
 
Algebra i
Algebra iAlgebra i
Algebra i
 
Seminario basutel esup1
Seminario basutel esup1Seminario basutel esup1
Seminario basutel esup1
 
Productos Notables
Productos NotablesProductos Notables
Productos Notables
 
PRACTICANDO MIS PRODUCTOS NOTABLES
PRACTICANDO MIS PRODUCTOS NOTABLESPRACTICANDO MIS PRODUCTOS NOTABLES
PRACTICANDO MIS PRODUCTOS NOTABLES
 
Ecuaciones grado2 blog
Ecuaciones grado2 blogEcuaciones grado2 blog
Ecuaciones grado2 blog
 
Taller edo
Taller edoTaller edo
Taller edo
 
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptx
6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx6. 1°  TUTORIA DE   14 -03  al  4 - 04   PRIMER AÑO INAM.pptx
6. 1° TUTORIA DE 14 -03 al 4 - 04 PRIMER AÑO INAM.pptx
 
Algebra
AlgebraAlgebra
Algebra
 
Algebra
AlgebraAlgebra
Algebra
 
100 Problemas Resueltos de Geometría Analítica
100 Problemas Resueltos de Geometría Analítica100 Problemas Resueltos de Geometría Analítica
100 Problemas Resueltos de Geometría Analítica
 
Modelo de examen bimestral iii segundo solucion tipeada
Modelo de examen bimestral iii segundo solucion tipeadaModelo de examen bimestral iii segundo solucion tipeada
Modelo de examen bimestral iii segundo solucion tipeada
 

Más de cjperu

Prospecto 2016 unprg nueva estructura de examen
Prospecto 2016  unprg nueva estructura de examenProspecto 2016  unprg nueva estructura de examen
Prospecto 2016 unprg nueva estructura de examencjperu
 
Lógica
LógicaLógica
Lógicacjperu
 
Ecuaciones trigonometricas práctica
Ecuaciones trigonometricas   prácticaEcuaciones trigonometricas   práctica
Ecuaciones trigonometricas prácticacjperu
 
Ley de senos
Ley de senosLey de senos
Ley de senoscjperu
 
Ley de cosenos
Ley de cosenosLey de cosenos
Ley de cosenoscjperu
 
Bases conamat2015
Bases conamat2015Bases conamat2015
Bases conamat2015cjperu
 
Lógica Proposicional
Lógica ProposicionalLógica Proposicional
Lógica Proposicionalcjperu
 
Álgebra pre
Álgebra preÁlgebra pre
Álgebra precjperu
 
Trigonometria
TrigonometriaTrigonometria
Trigonometriacjperu
 
Factorización
FactorizaciónFactorización
Factorizacióncjperu
 
Bingo Algebraico - 1º sec
Bingo Algebraico - 1º secBingo Algebraico - 1º sec
Bingo Algebraico - 1º seccjperu
 
Factorización fc - tcp - dc - as
Factorización   fc - tcp - dc - asFactorización   fc - tcp - dc - as
Factorización fc - tcp - dc - ascjperu
 
Robotica poleas
Robotica   poleasRobotica   poleas
Robotica poleascjperu
 
Dominó de factorización
Dominó de factorizaciónDominó de factorización
Dominó de factorizacióncjperu
 
Relaciones y funciones smr
Relaciones y funciones smrRelaciones y funciones smr
Relaciones y funciones smrcjperu
 
Entorno NXT
Entorno NXTEntorno NXT
Entorno NXTcjperu
 
Historia de la trigonometría
Historia de la trigonometría Historia de la trigonometría
Historia de la trigonometría cjperu
 
Productos Notables I
Productos Notables IProductos Notables I
Productos Notables Icjperu
 
Historia de la trigonometría
Historia de la trigonometríaHistoria de la trigonometría
Historia de la trigonometríacjperu
 
Refuerzo de 5º
Refuerzo de 5ºRefuerzo de 5º
Refuerzo de 5ºcjperu
 

Más de cjperu (20)

Prospecto 2016 unprg nueva estructura de examen
Prospecto 2016  unprg nueva estructura de examenProspecto 2016  unprg nueva estructura de examen
Prospecto 2016 unprg nueva estructura de examen
 
Lógica
LógicaLógica
Lógica
 
Ecuaciones trigonometricas práctica
Ecuaciones trigonometricas   prácticaEcuaciones trigonometricas   práctica
Ecuaciones trigonometricas práctica
 
Ley de senos
Ley de senosLey de senos
Ley de senos
 
Ley de cosenos
Ley de cosenosLey de cosenos
Ley de cosenos
 
Bases conamat2015
Bases conamat2015Bases conamat2015
Bases conamat2015
 
Lógica Proposicional
Lógica ProposicionalLógica Proposicional
Lógica Proposicional
 
Álgebra pre
Álgebra preÁlgebra pre
Álgebra pre
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Factorización
FactorizaciónFactorización
Factorización
 
Bingo Algebraico - 1º sec
Bingo Algebraico - 1º secBingo Algebraico - 1º sec
Bingo Algebraico - 1º sec
 
Factorización fc - tcp - dc - as
Factorización   fc - tcp - dc - asFactorización   fc - tcp - dc - as
Factorización fc - tcp - dc - as
 
Robotica poleas
Robotica   poleasRobotica   poleas
Robotica poleas
 
Dominó de factorización
Dominó de factorizaciónDominó de factorización
Dominó de factorización
 
Relaciones y funciones smr
Relaciones y funciones smrRelaciones y funciones smr
Relaciones y funciones smr
 
Entorno NXT
Entorno NXTEntorno NXT
Entorno NXT
 
Historia de la trigonometría
Historia de la trigonometría Historia de la trigonometría
Historia de la trigonometría
 
Productos Notables I
Productos Notables IProductos Notables I
Productos Notables I
 
Historia de la trigonometría
Historia de la trigonometríaHistoria de la trigonometría
Historia de la trigonometría
 
Refuerzo de 5º
Refuerzo de 5ºRefuerzo de 5º
Refuerzo de 5º
 

Último

MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxMINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxLorenaHualpachoque
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfGonella
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptxDemetrio Ccesa Rayme
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraJavier Andreu
 
Evaluación de los Factores Externos de la Organización.
Evaluación de los Factores Externos de la Organización.Evaluación de los Factores Externos de la Organización.
Evaluación de los Factores Externos de la Organización.JonathanCovena1
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdfDemetrio Ccesa Rayme
 
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptxnelsontobontrujillo
 
Estudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado BásicoEstudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado Básicomaxgamesofficial15
 
Botiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdfBotiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdfefmenaes
 
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdfDiseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdfDemetrio Ccesa Rayme
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfandioclex
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.JonathanCovena1
 
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdfEdiciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdfDemetrio Ccesa Rayme
 
Libros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfLibros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfGalletitas default
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionessubfabian
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdfDemetrio Ccesa Rayme
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesChema R.
 

Último (20)

MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxMINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
Evaluación de los Factores Externos de la Organización.
Evaluación de los Factores Externos de la Organización.Evaluación de los Factores Externos de la Organización.
Evaluación de los Factores Externos de la Organización.
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
Estudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado BásicoEstudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado Básico
 
Botiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdfBotiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdf
 
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdfDiseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdf
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
 
Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.
 
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdfEdiciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D  Ccesa007.pdf
Ediciones Previas Proyecto de Innovacion Pedagogica ORIGAMI 3D Ccesa007.pdf
 
Libros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfLibros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdf
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definiciones
 
¿Que es Fuerza? online 2024 Repaso CRECE.pptx
¿Que es Fuerza? online 2024 Repaso CRECE.pptx¿Que es Fuerza? online 2024 Repaso CRECE.pptx
¿Que es Fuerza? online 2024 Repaso CRECE.pptx
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
 

Teoría de exponentes ec. exponenciales

  • 1. TEORÍA DE EXPONENTES 1. Efectuar: P = 294 336 30.14.15 80.35.21 2. Ordenar en forma decreciente: A = 432 1 B = 413 2 C = 241 3 D = 123 4 E = 231 4 3. Simplificar: R = 7 2 7 3 7 2 7 1 2 1 4. 4 1 2.)9(.)2(              4. Hallar el valor de “M”: M =          b 2a 2 2          2b a 2 2 5. Reducir: P = 4 5074 )2( 6. Calcular: A = 144 208 2.24  7. Hallar el valor de W: W = 1249 12412 894    8. Hallar el valor de: 2n 1n2nn 2 222    9. Al simplificar: n n n22n32 n n n2n2 xx xx   el exponente de x es: 10. Sabiendo que: E = 2x 5 5.220 20 2x2x22x 1x             Hallar E3 11. Simplificar: T = 4 m m 811 811    12. Calcular el valor reducido de la expresión “N”: N = a aaa aaa 1286 432    13. Reducir: P =         v eces"n" 8m n mn mn mn m f actores)6m( 2m2m2m2m xx.x.x xx.x.x          14. Simplificar: E = 8 5 3 904 3517 4 8 7533 5 60 x.x.x.x x.x.x.x Dar como respuesta el exponente de x: 15. Reducir:          radicales)1a( a a a a sumandos"n" a a a a a a aaa a )factoresn(aaa   16. Si: Q = 7 7 7 333 radicalesxxx 
  • 2. P = 5 5 5 333 radicalesxxx   Calcular: P + Q 17. Resolver: 3x91x53 273   18. Hallar x, si: 73x–2 + 72 = 50 19. Hallar “x” en: 3 1 9 1x98   20. Calcular el valor de “x” en: 3x–3 + 3x–2 + 3x–1 = 39 21. Sabiendo que: 2x–3 = 3 Hallar: 21–x 22. Hallar “p” que cumple: 16 9 3 4 . 4 3 1p        23. Si n  N y además:         v eces10 v eces81 360360360 81..81.81.81 nnn  = 8181 24. Si xy = 2, calcular: 2y 2y y 3 y yx 4.x.x                        25. Calcular el valor de xy, si: 8y = 4  3 27 27 3 = xx 26. Si se cumple: 6x x = 6, calcular x 27. Si se cumple: x 1 x = 2 calcular: x 28. Sea: 2x x = 5 Hallar: x2 x x      29. Si x x = 3, calcular: E = x1xx x  30. Resolver: 0724933xx 3x   31. Si 2 1 x x x2 x  simplificar: x2x 1xxx)x2( x  32. Sabiendo que: aa = 2, calcular: 3 a 1 aaaa2a a          33. Simplificar: E = 1 9 1 9 1 veces8 9 1 9 1 9 1 veces8 9 1 9 1 9 1 9 1 9 1                                                                         34. Simplificar: M = 4 4 4 7 7 7 444 radicx.x.x radicxxx     35. Simplificar: W = 1x1x1x x1x2x 333 3.23.123.27     36. Si 4x – 4x–1 = 24, halla el valor de (2x)x . 37. Calcular el valor de “x” si: 3 –       2 3 2 3 2 3 xxx 38. Para qué valor de “n” se cumple que: 81 3n27 2n9 1n3 n 812793  