SlideShare una empresa de Scribd logo
COEFICIENTES INDETERMINADOS -MÉTODO SUPERPOSICIÓN- Por: ,[object Object]
 Pablo Torres
 Jorge Luis Veintimilla,[object Object]
 	Método del Anulador.El Método de Superposición nos permite determinar una función complementaria para así hallar la solución particular de una ecuación dada.
MÉTODO SUPERPOSICIÓN Este método nos permite encontrar una solución particular Yp(x) para las ecuaciones diferenciales lineales de segundo orden de la forma: donde a, b, c son constantes y
El método es aplicable también cuando la función: Consiste de una suma y productos finitos de funciones polinomiales, exponenciales, trigonométricas. Así mismo, pueden considerarse ecuaciones diferenciales no homogéneas con coeficientes constantes de orden superior. El enfoque del método de coeficientes indeterminados  se basa en tres principios de derivación de funciones : 1. Cuando derivamos un polinomio, el grado de éste disminuye en uno. Si  g(x) = bkxk+bk-1xk-1 +…..+b1X+bQ entonces g‘(x) = kbkxk-1 + (k-1)bk-1xk-2 +…… + b1.  Evidentemente si derivamos dos veces p, su grado disminuye en dos.
2. Al derivar una función exponencial, la función "casi no cambia". Si g(x) = eaxentonces g'(x) — aeax — ag(x).  La derivada es casi la función g (salvo por la constante multiplicativa a). 	 3. Si derivamos g{x) = senmx pasamos al coseno: g'{x) = m cosmx. Si derivamos g{x) = cosmx pasamos al seno: g'{x) = —m senmx. Si derivamos dos veces g{x) = senmx regresamos casi a g(x), g"(x) =-m2 senmx. Si derivamos dos veces g(x) = cosmx regresamos casi a g(x), g"{x) = -m2cosmx. Una solución particular tendrá la misma forma que g(x), excepto cuando g es una solución de la ecuación homogénea. En esencia, el método consiste en proponer una solución particular  que contenga uno o más coeficientes desconocidos. Entonces sustituimos esta solución propuesta en la ecuación diferencial y escogemos los coeficientes de tal manera que la función efectivamente satisfaga la ecuación.
Casos especiales para hallar una solución particular , dependiendo de la forma de g(x). CASO 1.                          g(x) = Pn(x) = anxn + an-1xn-1+ …+ a1x + a0.     En este caso la ecuación diferencial toma la forma: Proponemos una solución particular de la forma: Sustituyendo yp, y'p y y´´p en Resulta:
O equivalentemente : y comparando coeficientes obtenemos elsistema de ecuaciones : Si c ≠ O de la primera ecuación determinamos An y de las restantes los demás coeficientes. Si c =0 pero b≠0, el polinomio en el miembro izquierdo es de grado n — 1 y dicha ecuación no puede satisfacerse. Así que si c = 0 proponemos: y procedemos como antes para determinar An, An-1 , . . . , A0. Nótese además que si c = 0 una constante es solución de la ecuación diferencial homogénea.Si tanto b = 0 como c = 0 (1 y x son soluciones de la homogénea), se propone:  aunque ahora la ecuación diferencial puede integrarse directamente.
CASO 2.             g(x) = eaxPn(x), donde Pn(x) es un polinomio de grado n. Tenemos ahora la euación: Son posibles los siguientes subcasos. a) a no es una raíz de la ecuación auxiliar En este caso, es preciso hallar una solución particular de la forma: En efecto, introduciendo yp, y'v y y^ en: y dividiendo por eax se sigue que: Ya que grado (Qn(x)) = n, grado(Qn´(x)) = n - l y grado(Qn´´(x)) = n - 2, los polinomios en ambos miembros  son de grado n. Igualando los coeficientes de las mismas potencias de x se obtiene un sistema de n+1 ecuaciones que determina los valores de:  An, A n-1, . . . , A0.
CASO 3.      g(x) = P(x)eaxCosβx + Q(x)eaxsenβ x, donde P(x) y Q(x) son polinomios. Podemos examinar este caso en forma análoga al caso II, usando que: por lo cual : Y considerando de manera independiente las partes real e imaginaria, podemos hallar soluciones que no contengan números complejos de la siguiente forma: a) Si α + i β no es raíz de la ecuación auxiliar, buscamos una solución particular de la forma: donde u(x) y v{x) son polinomios cuyo grado es igual al mayor de los grados de P(x) y Q(x). b) Si α + i β es raíz de la ecuación auxiliar, hacemos:
Se concluye que las formas propuestas: para la solución particular, también son válidas cuando P(x) = 0 o Q(x) = 0 y en el caso particularcuando a = 0 o b = 0.
EJEMPLO Resolver La solución general tiene la forma y = yc + yP, donde yc es la solución general de la ecuación homogénea. y yp es una solución particular de La ecuación auxiliar  es:  m2 + 3m + 2 = 0, cuyas raíces son m = -1  y    m 2 = - 2 Por otra parte, proponemos una solución particular de la forma:

Más contenido relacionado

La actualidad más candente

Tutorial de ecuaciones diferenciales
Tutorial de ecuaciones diferencialesTutorial de ecuaciones diferenciales
Tutorial de ecuaciones diferenciales
victorjlu
 
Espacio vectorial de funciones
Espacio vectorial de funciones Espacio vectorial de funciones
Espacio vectorial de funciones
Romina Herrera
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
AlexCoeto
 
Resolución de Ecuaciones Diferenciales; Metodo de Variacion de Parametros
Resolución de Ecuaciones Diferenciales; Metodo de Variacion de ParametrosResolución de Ecuaciones Diferenciales; Metodo de Variacion de Parametros
Resolución de Ecuaciones Diferenciales; Metodo de Variacion de Parametros
Karis
 
Integración por fracciones parciales
Integración por fracciones parcialesIntegración por fracciones parciales
Integración por fracciones parciales
Mario Lopez
 
Conjunto generador
Conjunto generadorConjunto generador
Conjunto generador
algebra
 

La actualidad más candente (20)

Demostración de la transformada de laplace para la función delta de dirac
Demostración de la transformada de laplace para la función delta de diracDemostración de la transformada de laplace para la función delta de dirac
Demostración de la transformada de laplace para la función delta de dirac
 
Tutorial de ecuaciones diferenciales
Tutorial de ecuaciones diferencialesTutorial de ecuaciones diferenciales
Tutorial de ecuaciones diferenciales
 
Espacios L2
Espacios L2Espacios L2
Espacios L2
 
Espacio vectorial de funciones
Espacio vectorial de funciones Espacio vectorial de funciones
Espacio vectorial de funciones
 
Tabla de derivadas 1
Tabla de derivadas 1Tabla de derivadas 1
Tabla de derivadas 1
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
 
Presentación muller
Presentación mullerPresentación muller
Presentación muller
 
2011 runge kutta
2011 runge kutta2011 runge kutta
2011 runge kutta
 
Calculo Vectorial - Parte II
Calculo Vectorial - Parte IICalculo Vectorial - Parte II
Calculo Vectorial - Parte II
 
Ecuación de cuarto grado por el método de Luigi Ferrari
Ecuación de cuarto grado por el método de Luigi Ferrari Ecuación de cuarto grado por el método de Luigi Ferrari
Ecuación de cuarto grado por el método de Luigi Ferrari
 
Derivacion implicita
Derivacion implicitaDerivacion implicita
Derivacion implicita
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposición
 
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalSesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
 
Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)
 
Resolución de Ecuaciones Diferenciales; Metodo de Variacion de Parametros
Resolución de Ecuaciones Diferenciales; Metodo de Variacion de ParametrosResolución de Ecuaciones Diferenciales; Metodo de Variacion de Parametros
Resolución de Ecuaciones Diferenciales; Metodo de Variacion de Parametros
 
Integración por fracciones parciales
Integración por fracciones parcialesIntegración por fracciones parciales
Integración por fracciones parciales
 
Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativos
 
Coeficientes indeterminados
Coeficientes indeterminadosCoeficientes indeterminados
Coeficientes indeterminados
 
Funciones vectoriales
Funciones vectorialesFunciones vectoriales
Funciones vectoriales
 
Conjunto generador
Conjunto generadorConjunto generador
Conjunto generador
 

Similar a Coeficientes Indeterminados

Ecuaciones con Coeficientes Indeterminados
Ecuaciones con Coeficientes IndeterminadosEcuaciones con Coeficientes Indeterminados
Ecuaciones con Coeficientes Indeterminados
Hikaruka
 
Ecuaciones diferen ciales constantes coeficientes
Ecuaciones diferen ciales constantes coeficientesEcuaciones diferen ciales constantes coeficientes
Ecuaciones diferen ciales constantes coeficientes
ruben710207
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
Esteban
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
Esteban
 

Similar a Coeficientes Indeterminados (20)

ED Coeficientes Indeterminados
ED Coeficientes IndeterminadosED Coeficientes Indeterminados
ED Coeficientes Indeterminados
 
Coeficientes Indeterminados
Coeficientes IndeterminadosCoeficientes Indeterminados
Coeficientes Indeterminados
 
Ecuaciones diferenciales trabajo
Ecuaciones diferenciales trabajoEcuaciones diferenciales trabajo
Ecuaciones diferenciales trabajo
 
1 ecuaciones
1 ecuaciones1 ecuaciones
1 ecuaciones
 
CALCULO
CALCULOCALCULO
CALCULO
 
Ecuaciones con Coeficientes Indeterminados
Ecuaciones con Coeficientes IndeterminadosEcuaciones con Coeficientes Indeterminados
Ecuaciones con Coeficientes Indeterminados
 
Ecuaciones diferen ciales constantes coeficientes
Ecuaciones diferen ciales constantes coeficientesEcuaciones diferen ciales constantes coeficientes
Ecuaciones diferen ciales constantes coeficientes
 
Ecuaciones Diferenciales Por Coeficientes Indeterminados
Ecuaciones Diferenciales Por Coeficientes IndeterminadosEcuaciones Diferenciales Por Coeficientes Indeterminados
Ecuaciones Diferenciales Por Coeficientes Indeterminados
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Resumen
ResumenResumen
Resumen
 
Froilan Ramos Métodos de Eliminación Gaussiana
Froilan Ramos Métodos de Eliminación GaussianaFroilan Ramos Métodos de Eliminación Gaussiana
Froilan Ramos Métodos de Eliminación Gaussiana
 
Coeficientes Indeterminados
Coeficientes IndeterminadosCoeficientes Indeterminados
Coeficientes Indeterminados
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
 
Alg(3) 4° 2 b
Alg(3) 4° 2 bAlg(3) 4° 2 b
Alg(3) 4° 2 b
 
Trabajo De Coef. Indeterminados
Trabajo De Coef. IndeterminadosTrabajo De Coef. Indeterminados
Trabajo De Coef. Indeterminados
 
Ecuacion difrencial Lm
Ecuacion difrencial LmEcuacion difrencial Lm
Ecuacion difrencial Lm
 
ecuaciones.pptx
ecuaciones.pptxecuaciones.pptx
ecuaciones.pptx
 
Ecuaciones exactas,lineales,bernulli
Ecuaciones exactas,lineales,bernulliEcuaciones exactas,lineales,bernulli
Ecuaciones exactas,lineales,bernulli
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 

Último

Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Noe Castillo
 

Último (20)

5.Deicticos Uno_Enfermería_EspanolAcademico
5.Deicticos Uno_Enfermería_EspanolAcademico5.Deicticos Uno_Enfermería_EspanolAcademico
5.Deicticos Uno_Enfermería_EspanolAcademico
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
 
4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico
 
Power Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptxPower Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptx
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
 
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOSTRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
Proyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasProyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistas
 
PROYECTO INTEGRADOR ARCHIDUQUE. presentacion
PROYECTO INTEGRADOR ARCHIDUQUE. presentacionPROYECTO INTEGRADOR ARCHIDUQUE. presentacion
PROYECTO INTEGRADOR ARCHIDUQUE. presentacion
 
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALLA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
 
6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu Remodelación
 
Presentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesPresentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clases
 

Coeficientes Indeterminados

  • 1.
  • 3.
  • 4. Método del Anulador.El Método de Superposición nos permite determinar una función complementaria para así hallar la solución particular de una ecuación dada.
  • 5. MÉTODO SUPERPOSICIÓN Este método nos permite encontrar una solución particular Yp(x) para las ecuaciones diferenciales lineales de segundo orden de la forma: donde a, b, c son constantes y
  • 6. El método es aplicable también cuando la función: Consiste de una suma y productos finitos de funciones polinomiales, exponenciales, trigonométricas. Así mismo, pueden considerarse ecuaciones diferenciales no homogéneas con coeficientes constantes de orden superior. El enfoque del método de coeficientes indeterminados se basa en tres principios de derivación de funciones : 1. Cuando derivamos un polinomio, el grado de éste disminuye en uno. Si g(x) = bkxk+bk-1xk-1 +…..+b1X+bQ entonces g‘(x) = kbkxk-1 + (k-1)bk-1xk-2 +…… + b1. Evidentemente si derivamos dos veces p, su grado disminuye en dos.
  • 7. 2. Al derivar una función exponencial, la función "casi no cambia". Si g(x) = eaxentonces g'(x) — aeax — ag(x). La derivada es casi la función g (salvo por la constante multiplicativa a). 3. Si derivamos g{x) = senmx pasamos al coseno: g'{x) = m cosmx. Si derivamos g{x) = cosmx pasamos al seno: g'{x) = —m senmx. Si derivamos dos veces g{x) = senmx regresamos casi a g(x), g"(x) =-m2 senmx. Si derivamos dos veces g(x) = cosmx regresamos casi a g(x), g"{x) = -m2cosmx. Una solución particular tendrá la misma forma que g(x), excepto cuando g es una solución de la ecuación homogénea. En esencia, el método consiste en proponer una solución particular que contenga uno o más coeficientes desconocidos. Entonces sustituimos esta solución propuesta en la ecuación diferencial y escogemos los coeficientes de tal manera que la función efectivamente satisfaga la ecuación.
  • 8. Casos especiales para hallar una solución particular , dependiendo de la forma de g(x). CASO 1. g(x) = Pn(x) = anxn + an-1xn-1+ …+ a1x + a0. En este caso la ecuación diferencial toma la forma: Proponemos una solución particular de la forma: Sustituyendo yp, y'p y y´´p en Resulta:
  • 9. O equivalentemente : y comparando coeficientes obtenemos elsistema de ecuaciones : Si c ≠ O de la primera ecuación determinamos An y de las restantes los demás coeficientes. Si c =0 pero b≠0, el polinomio en el miembro izquierdo es de grado n — 1 y dicha ecuación no puede satisfacerse. Así que si c = 0 proponemos: y procedemos como antes para determinar An, An-1 , . . . , A0. Nótese además que si c = 0 una constante es solución de la ecuación diferencial homogénea.Si tanto b = 0 como c = 0 (1 y x son soluciones de la homogénea), se propone: aunque ahora la ecuación diferencial puede integrarse directamente.
  • 10. CASO 2. g(x) = eaxPn(x), donde Pn(x) es un polinomio de grado n. Tenemos ahora la euación: Son posibles los siguientes subcasos. a) a no es una raíz de la ecuación auxiliar En este caso, es preciso hallar una solución particular de la forma: En efecto, introduciendo yp, y'v y y^ en: y dividiendo por eax se sigue que: Ya que grado (Qn(x)) = n, grado(Qn´(x)) = n - l y grado(Qn´´(x)) = n - 2, los polinomios en ambos miembros son de grado n. Igualando los coeficientes de las mismas potencias de x se obtiene un sistema de n+1 ecuaciones que determina los valores de: An, A n-1, . . . , A0.
  • 11. CASO 3. g(x) = P(x)eaxCosβx + Q(x)eaxsenβ x, donde P(x) y Q(x) son polinomios. Podemos examinar este caso en forma análoga al caso II, usando que: por lo cual : Y considerando de manera independiente las partes real e imaginaria, podemos hallar soluciones que no contengan números complejos de la siguiente forma: a) Si α + i β no es raíz de la ecuación auxiliar, buscamos una solución particular de la forma: donde u(x) y v{x) son polinomios cuyo grado es igual al mayor de los grados de P(x) y Q(x). b) Si α + i β es raíz de la ecuación auxiliar, hacemos:
  • 12. Se concluye que las formas propuestas: para la solución particular, también son válidas cuando P(x) = 0 o Q(x) = 0 y en el caso particularcuando a = 0 o b = 0.
  • 13. EJEMPLO Resolver La solución general tiene la forma y = yc + yP, donde yc es la solución general de la ecuación homogénea. y yp es una solución particular de La ecuación auxiliar es: m2 + 3m + 2 = 0, cuyas raíces son m = -1 y m 2 = - 2 Por otra parte, proponemos una solución particular de la forma:
  • 14. Ya que el lado derecho es un polinomio de grado 2 y 0 no es raíz característica. Tenemos que y'p= B + 2Ax, y'‘p = 2Ay. Sustituyendo, resulta: Comparando coeficientes en la última igualdad obtenemos el sistema de ecuaciones lineales: Así que: Y la solución general es:
  • 15.
  • 16. EDWARDS, Jr, PENNEY, David, “Ecuaciones Diferenciales Elementales con Aplicaciones”, PRENTICE – HALL, Mexico.
  • 17.