Funciones
Relaciones y Funciones
 El concepto de Relación-Función es uno de los
más importantes en Matemáticas.
Comprenderlo y aplicarlo se verá retribuido
muchas veces.
Correspondencia
 La noción de correspondencia desempeña
un papel fundamental en el concepto de
Relación – Función.
 En nuestra vida cotidiana frecuentemente
hemos tenido experiencia con
correspondencias o RELACIONES.
Ejemplos de Correspondencias
o RELACIONES
 En un almacén, a cada artículo le
corresponde un precio.
 A cada nombre del directorio telefónico le
corresponde uno o varios números.
 A cada número le corresponde una segunda
potencia.
 A cada estudiante le corresponde un
promedio de calificaciones
Definición de Relación y de
Función
 Relación es la correspondencia de un primer
conjunto, llamado Dominio, con un segundo
conjunto, llamado Rango, de manera que a cada
elemento del Dominio le corresponde uno o más
elemento del Recorrido o Rango.
 Una Función es una relación a la que se añade la
restricción de que a cada valor del Dominio le
corresponde uno y sólo un valor del recorrido.
 (Todas las funciones son relaciones, pero no todas
las relaciones son funciones)
Toda ecuación es una Relación,
pero no toda ecuación es una
Función
Haga clic en las ecuaciones que están ubicadas
en el recuadro de la derecha, las que Ud.
considere que son funciones.
¿Por qué
algunas de las
ecuaciones
son
Funciones?
Todas las Relaciones pueden ser
graficadas en el Plano Cartesiano
FUNCIÓN
La Respuesta correcta es B
FUNCIÓN
La Respuesta correcta es D
Funciones Polinomiales:
 Def : una función f se llama
función polinomial si
F(x) = an xn +an – 1x n-1+…..+a1x
+a0
Ejemplos:
F(x) = 6x2 + 7x -2
F(x)= 2x +3
F(x) = 6
I. FUNCIÓN LINEAL
 Análisis de la Pendiente
Para saber con qué tipo de función se está trabajando, se debe
analizar el signo de la pendiente.
• Si m < 0, entonces la función es decreciente.
• Si m = 0, entonces la función es constante.
• Si m > 0, entonces la función es creciente.
I. FUNCIÓN LINEAL
I) II)
X
Y
n
m > 0
n > 0
X
Y
n m < 0
n > 0
X
Y
n
m > 0
n < 0
X
Y
n
m < 0
n < 0
III) IV)
I. FUNCIÓN LINEAL
 Propiedades:
 El dominio de la función lineal son todos los números IR.
 Las rectas que tienen la misma m serán paralelas.
 Las rectas que al multiplicar sus pendientes el producto es -1
serán perpendiculares.
II. FUNCIÓN CUADRÁTICA
 Son de la forma:
 Gráfica:
Siempre es una parábola, dependiendo su forma y
la ubicación de sus coeficientes a, b y c.
f(x) = ax² + bx + c
II. FUNCIÓN CUADRÁTICA
 Concavidad:
El coeficiente a de la función cuadrática indica si la parábola es
abierta hacia arriba o hacia abajo.
x
y
0 x0
y
a > 0, Abierta hacia arriba a < 0, Abierta hacia abajo
II. FUNCIÓN CUADRÁTICA
 Eje de simetría y vértice:
El eje de simetría es aquella recta paralela al eje Y y que pasa por
el vértice de la parábola.
El vértice está dado por:
Vértice = -b , f -b = -b , 4ac – b²
2a 2a 2a 4a
II. FUNCIÓN CUADRÁTICA
Además, la recta x = , corresponde al Eje de simetría.-b
2a
_ b² - 4ac
4a
x
y
·
-b
2a
x0
y
·_ b² - 4ac
4a
-b
2a
a > 0 a < 0
II. FUNCIÓN CUADRÁTICA
 Intersección con los ejes
 Intersección con el eje Y
El coeficiente c nos da el punto en el cual la parábola corta al eje
Y.
Sus coordenadas son (0, c)
0
c·
y
x
II. FUNCIÓN CUADRÁTICA
 Intersección con el eje X
para determinar el o los puntos donde la parábola corta al eje X,
es necesario conocer el valor del discriminante de la función
cuadrática.
Se define el discriminante como:
D = b² - 4ac
II. FUNCIÓN CUADRÁTICA
 Naturaleza de las raíces de una ecuación de 2º grado
Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º
grado en su forma general.
Toda ecuación de 2º grado posee dos soluciones, pudiendo ser
reales o imaginarias, las que vienen dadas por la expresión:
x = -b ±√b²- 4ac
2a
x = -b ±√b²- 4ac
2a
1
x = -b ±√b²- 4ac
2a
2
Estas soluciones, raíces o ceros de la ecuación
corresponden gráficamente a los puntos donde la función f(x)
= ax² + bx + c corta al eje X. Estos puntos tienen como
coordenadas (x ,0) y (x , 0)1 2
II. FUNCIÓN CUADRÁTICA
 Tipos de soluciones
Dependen del valor del Discriminante
a) Si D = 0, 2 soluciones reales iguales
b) Si D > 0, 2 soluciones reales distintas (x y x € C, con x ≠ x )
c) Si D < 0, 2 soluciones imaginarias distintas (x y x € C, con x ≠ x )
D = b² - 4ac
(x = y)1 1
1 12 2
1 12 2
II. FUNCIÓN CUADRÁTICA
 Ejemplo:
 Sea la ecuación de 2º grado: x² + 2x – 15 = 0. ¿Cuáles son las soluciones de
esta ecuación?
Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por
En este caso a = 1 b = 2 c = -15
Luego,
Luego,
x = 3 x = -5
x = -b ±√b²- 4ac
2a
x = -2 ±√2²- 4·1·(-15)
2·1
x = -2 ±√4- 60
2
x = -2 ±√64
2
x = -2 ±8
2
x = -2 + 8
2
1
x = -2 - 8
2
2
1 2

Funciones parte I

  • 1.
  • 2.
    Relaciones y Funciones El concepto de Relación-Función es uno de los más importantes en Matemáticas. Comprenderlo y aplicarlo se verá retribuido muchas veces.
  • 3.
    Correspondencia  La nociónde correspondencia desempeña un papel fundamental en el concepto de Relación – Función.  En nuestra vida cotidiana frecuentemente hemos tenido experiencia con correspondencias o RELACIONES.
  • 4.
    Ejemplos de Correspondencias oRELACIONES  En un almacén, a cada artículo le corresponde un precio.  A cada nombre del directorio telefónico le corresponde uno o varios números.  A cada número le corresponde una segunda potencia.  A cada estudiante le corresponde un promedio de calificaciones
  • 5.
    Definición de Relacióny de Función  Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Rango, de manera que a cada elemento del Dominio le corresponde uno o más elemento del Recorrido o Rango.  Una Función es una relación a la que se añade la restricción de que a cada valor del Dominio le corresponde uno y sólo un valor del recorrido.  (Todas las funciones son relaciones, pero no todas las relaciones son funciones)
  • 6.
    Toda ecuación esuna Relación, pero no toda ecuación es una Función
  • 7.
    Haga clic enlas ecuaciones que están ubicadas en el recuadro de la derecha, las que Ud. considere que son funciones. ¿Por qué algunas de las ecuaciones son Funciones?
  • 8.
    Todas las Relacionespueden ser graficadas en el Plano Cartesiano
  • 9.
  • 10.
  • 11.
    Funciones Polinomiales:  Def: una función f se llama función polinomial si F(x) = an xn +an – 1x n-1+…..+a1x +a0 Ejemplos: F(x) = 6x2 + 7x -2 F(x)= 2x +3 F(x) = 6
  • 12.
    I. FUNCIÓN LINEAL Análisis de la Pendiente Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente. • Si m < 0, entonces la función es decreciente. • Si m = 0, entonces la función es constante. • Si m > 0, entonces la función es creciente.
  • 13.
    I. FUNCIÓN LINEAL I)II) X Y n m > 0 n > 0 X Y n m < 0 n > 0 X Y n m > 0 n < 0 X Y n m < 0 n < 0 III) IV)
  • 14.
    I. FUNCIÓN LINEAL Propiedades:  El dominio de la función lineal son todos los números IR.  Las rectas que tienen la misma m serán paralelas.  Las rectas que al multiplicar sus pendientes el producto es -1 serán perpendiculares.
  • 15.
    II. FUNCIÓN CUADRÁTICA Son de la forma:  Gráfica: Siempre es una parábola, dependiendo su forma y la ubicación de sus coeficientes a, b y c. f(x) = ax² + bx + c
  • 16.
    II. FUNCIÓN CUADRÁTICA Concavidad: El coeficiente a de la función cuadrática indica si la parábola es abierta hacia arriba o hacia abajo. x y 0 x0 y a > 0, Abierta hacia arriba a < 0, Abierta hacia abajo
  • 17.
    II. FUNCIÓN CUADRÁTICA Eje de simetría y vértice: El eje de simetría es aquella recta paralela al eje Y y que pasa por el vértice de la parábola. El vértice está dado por: Vértice = -b , f -b = -b , 4ac – b² 2a 2a 2a 4a
  • 18.
    II. FUNCIÓN CUADRÁTICA Además,la recta x = , corresponde al Eje de simetría.-b 2a _ b² - 4ac 4a x y · -b 2a x0 y ·_ b² - 4ac 4a -b 2a a > 0 a < 0
  • 19.
    II. FUNCIÓN CUADRÁTICA Intersección con los ejes  Intersección con el eje Y El coeficiente c nos da el punto en el cual la parábola corta al eje Y. Sus coordenadas son (0, c) 0 c· y x
  • 20.
    II. FUNCIÓN CUADRÁTICA Intersección con el eje X para determinar el o los puntos donde la parábola corta al eje X, es necesario conocer el valor del discriminante de la función cuadrática. Se define el discriminante como: D = b² - 4ac
  • 21.
    II. FUNCIÓN CUADRÁTICA Naturaleza de las raíces de una ecuación de 2º grado Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º grado en su forma general. Toda ecuación de 2º grado posee dos soluciones, pudiendo ser reales o imaginarias, las que vienen dadas por la expresión: x = -b ±√b²- 4ac 2a x = -b ±√b²- 4ac 2a 1 x = -b ±√b²- 4ac 2a 2 Estas soluciones, raíces o ceros de la ecuación corresponden gráficamente a los puntos donde la función f(x) = ax² + bx + c corta al eje X. Estos puntos tienen como coordenadas (x ,0) y (x , 0)1 2
  • 22.
    II. FUNCIÓN CUADRÁTICA Tipos de soluciones Dependen del valor del Discriminante a) Si D = 0, 2 soluciones reales iguales b) Si D > 0, 2 soluciones reales distintas (x y x € C, con x ≠ x ) c) Si D < 0, 2 soluciones imaginarias distintas (x y x € C, con x ≠ x ) D = b² - 4ac (x = y)1 1 1 12 2 1 12 2
  • 23.
    II. FUNCIÓN CUADRÁTICA Ejemplo:  Sea la ecuación de 2º grado: x² + 2x – 15 = 0. ¿Cuáles son las soluciones de esta ecuación? Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por En este caso a = 1 b = 2 c = -15 Luego, Luego, x = 3 x = -5 x = -b ±√b²- 4ac 2a x = -2 ±√2²- 4·1·(-15) 2·1 x = -2 ±√4- 60 2 x = -2 ±√64 2 x = -2 ±8 2 x = -2 + 8 2 1 x = -2 - 8 2 2 1 2