Números
reales
José David Ojeda M.
Matemáticas - 11º
1. Desigualdades
Matemáticas - 11º
1. Desigualdades
Entre dos números reales a y b, se cumple
solo una de las siguientes proposiciones:
Entonces R es un conjunto ordenado
Matemáticas - 11º
a b
a b
a b
1. Desigualdades
• Una desigualdad es una expresión de la
forma
donde a y b son números reales.
• Ejemplos:
Matemáticas - 11º
, , ,a b a b a b a b
2 1
2 5 2 3 6 6
3 2
2. Intervalos
Matemáticas - 11º
2. Intervalos
• Un intervalo es un subconjunto (no
vacio) de los números reales.
Es el espacio que se da de un punto a
otro (en la recta numérica) en el cual se
toman en cuenta todos los puntos
intermedios.
Se representan usando los puntos
externos del intervalo.
Matemáticas - 11º
2. Intervalos
• Clasificación de intervalos:
Matemáticas - 11º
(a, b)
( , ) /a b x R a x b
a b
2. Intervalos
Matemáticas - 11º
[a, b) (a, b]
[ , ) /a b x R a x b
a b
( , ] /a b x R a x b
a b
2. Intervalos
Matemáticas - 11º
[a, b]
[ , ] /a b x R a x b
a b
2. Intervalos
Matemáticas - 11º
Infinitos
a
( , ) /a x R x a [ , ) /a x R x a
a
a
( , ) /a x R x a ( , ] /a x R x a
a
2. Intervalos
• Operaciones entre Intervalos:
Dados dos intervalos A y B es posible
realizar las operaciones:
• Ejemplo:
Dados los intervalos A = (-4, 2],
B = [2, ∞), C = (-1, 3) Hallar:
Matemáticas - 11º
, , AyA B A B A B
a) b) c) d)A B B C B B C
2. Intervalos
• Solución:
a)
b)
Matemáticas - 11º
-4 -3 -2 -1 0 1 2 3 4 5 6
A
B
2A B
-4 -3 -2 -1 0 1 2 3 4 5 6
A B
B C
B
( 1, )B CC
2. Intervalos
• c)
• d)
Matemáticas - 11º
-4 -3 -2 -1 0 1 2 3 4 5 6B
B
( , 2)B
-4 -3 -2 -1 0 1 2 3 4 5 6
B
C [3, )B C
B C
3. Inecuaciones
Matemáticas - 11º
3. Inecuaciones
• Propiedades de las desigualdades:
Sean a, b y c números reales
Matemáticas - 11º
1)
2)
3) 0
4) y 0
Si y , entondes
Si , Entonces ,
Si y , Entonces y
Si , Entonces y
a b b c a c
a b a c b c a c b c
a b
a b c ac bc
c c
a b
a b c ac bc
c c
3. Inecuaciones
Una Inecuación es una desigualdad en la
cual intervienen una o mas variables.
• Resolver una Inecuación es hallar los
valores de la variables que hacen
verdadera la desigualdad. A estos
valores se les llama conjunto solución.
• Ejemplo: Hallar el conjunto solución de
la siguiente inecuación
Matemáticas - 11º
3 4 2x x
3. Inecuaciones
• Solución: Utilizando las propiedades de
las desigualdades.
Matemáticas - 11º
3 4 2
3 4 2
2 6
3
x x
x x
x
x
El conjunto solucion /es 3S x R x
3. Inecuaciones
• Ejemplo 2: Hallar el conjunto solución de
cada inecuación
• Solución:
a) Método Analítico:
Matemáticas - 11º
2
2
2
2 7 4
2 5 3 0a 0
2
b
3
) )
x x
x x
x x
2
Se consider
2 5
an
3 0
2 1 3 0 dos casos
x x
x x
3. Inecuaciones
• Caso 1: • Caso 2:
Uniendo las soluciones de ambos casos el
conjunto solución es
2 1 0 3 0
2 1 3
1
3
2
1
, 3 , 3
2
1
, 3
2
x x
x x
x x
2 1 0 0
2 1 3
1
3
2
1
, 3,
2
x
x x
x x
1
, 3
2 Matemáticas - 11º
3. Inecuaciones
• a) Método Gráfico:
Se hallan las raíces de los factores de la
expresión factorizada y se ubica en la
recta real:
Antes de cada una de las raíces las
expresiones son
negativas. Después son positivas.
.
Nota: Las raíz de un polinomio es el valor o los valores
de x para el cual el polinomio se hace cero P(x) = 0
Matemáticas - 11º
y2 1 3x x
3. Inecuaciones
• Se multiplican los signos en ambas
rectas, teniendo en cuenta las raíces
Matemáticas - 11º
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
- - - - - - - - - - - - - - - - - - - - + + + + + +
-4 -3 -2 -1 0 1 2 3 4
2 1x
3x
2 1 3x x
- - - - - - - - - - - - + + + + + + + + + + + + + +
+ + + + + + + + + + + + - - - - - - - - + + + + + +
• Se requiere que (2x + 1)(x – 3) < 0, lo
cual sucede en: 1
, 3
2
3. Inecuaciones
• b) Método Analítico:
Factorizando:
Por tratarse de una fracción
Entonces
Para que la fracción sea mayor o igual a
cero se presentan dos casos
Matemáticas - 11º
2
2
2 7 4
0
2 3
x x
x x
2 1 4
0
3 1
x x
x x
3 1 0x x
3 y 1x x
3. Inecuaciones
Matemáticas - 11º
2 1 4 30 01xx xx
2 1 0 4 0 2 1 0 4 0
1 1
x 4 x 4
2 2
1
x 4
2
1
, 4 ,
2
x x x x
x x
x
3 0 1 0 3 0 1 0
3 x 1 3 1
3 1
, 3 1,
x x x x
x x x
x x
Caso 1:
3. Inecuaciones
Matemáticas - 11º
2 1 4 3 10 0x xx x
2 1 0 4 0 2 1 0 4 0
1 1
4 4
2 2
1
4,
2
x x x x
x x x x
Caso 2:
3 0 1 0 3 0 1 0
3 1 3 1
3, 1
x x x x
x x x x
3. Inecuaciones
• Resolvemos la intersección para cada
uno de los casos:
Conjunto solución
Matemáticas - 11º
,
1
, 4 3
2
1,,
-5 -4 -3 -2 -1 0 1 2 3 4
, 4 1,
3. Inecuaciones
Conjunto solución:
Matemáticas - 11º
1
4,
2
3, 1
-5 -4 -3 -2 -1 0 1 2 3 4
1
3,
2
El conjunto solución final es la unión de las
soluciones para cada caso
1
1, 3, ,
2
4
3. Inecuaciones
• b) Método gráfico
-5 -4 -3 -2 -1 0 1
2 1 4
3 1
x x
x x
2 1x
3x
1x
4x -5 -4 -3 -2 -1 0 1
-5 -4 -3 -2 -1 0 1
-5 -4 -3 -2 -1 0 1
-5 -4 -3 -2 -1 0 1
- - - - - - - - - - - - - - - - - - - + + + +
- - - - - + + + + + + + + + + + + + + + + +
- - - - - - - - + + + + + + + + + + + + + +
- - - - - - - - - - - - - - - - - - - - - + + +
+ + + + - - - + + + + + + + + + + +- - + + +
3. Inecuaciones
• Ejercicios: Usando los métodos analítico
y grafico, hallar los valores de x para los
cuales se cumplen las siguientes
desigualdades:
2
2
2 2
7 8 2 7 x 12 0
6 2 4 1
1) 4)
5)
3)
3 13 10 0
x 6 5 0 4x 13
2)
36) 0
x x x
x x x x
x
Solo
Analítico
4. Valor absoluto
El valor absoluto de un número real es su
valor numérico sin tener en cuenta su
signo.
Por ejemplo 3 es el valor absoluto de 3 y
de -3.
• De manera genérica
0, donde,1) x a a x a x a
2) x a x a x a
4. Valor absoluto
• Otras propiedades del valor absoluto
2
3
0
) 4)
5)
6) 7)
a a ab a b
aa
b
b b
a b a b a a
4. Valor absoluto
• Ejemplo: Hallar los valores de x que
satisfacen la siguiente ecuación:
• Como se aplica la primera
propiedad:
• Por tanto el conjunto solución es
3 8 14x
14 0
3 8 14 o 3 8 14x x
22
2 o
3
x x
22
2,
3
4.1 Inecuaciones con valor
absoluto
• Para resolver inecuaciones con valor
absoluto, se tienen en cuenta las
siguientes propiedades:
2 2
con 01.
2. o
3.
x a a x a a
x a x a x a
x a x a
4.1 Inecuaciones con valor
absoluto
• Ejercicios: Hallar los valores de x para
los cuales se cumplen las siguientes
inecuaciones con valor absoluto
• Aplicando la primera propiedad:
) 2 9a x
9 7 9x
9 7 9 7x
2 16x
4.1 Inecuaciones con valor
absoluto
• Entonces el conjunto solución esta dado
por el intervalo:
• Aplicando la segunda propiedad:
• Por tanto el conjunto solución es:
2, 16
b) 2 5x
2 5 2 5ox x
3 x 7x
, 7 3,

NUMEROS REALES

  • 1.
    Números reales José David OjedaM. Matemáticas - 11º
  • 2.
  • 3.
    1. Desigualdades Entre dosnúmeros reales a y b, se cumple solo una de las siguientes proposiciones: Entonces R es un conjunto ordenado Matemáticas - 11º a b a b a b
  • 4.
    1. Desigualdades • Unadesigualdad es una expresión de la forma donde a y b son números reales. • Ejemplos: Matemáticas - 11º , , ,a b a b a b a b 2 1 2 5 2 3 6 6 3 2
  • 5.
  • 6.
    2. Intervalos • Unintervalo es un subconjunto (no vacio) de los números reales. Es el espacio que se da de un punto a otro (en la recta numérica) en el cual se toman en cuenta todos los puntos intermedios. Se representan usando los puntos externos del intervalo. Matemáticas - 11º
  • 7.
    2. Intervalos • Clasificaciónde intervalos: Matemáticas - 11º (a, b) ( , ) /a b x R a x b a b
  • 8.
    2. Intervalos Matemáticas -11º [a, b) (a, b] [ , ) /a b x R a x b a b ( , ] /a b x R a x b a b
  • 9.
    2. Intervalos Matemáticas -11º [a, b] [ , ] /a b x R a x b a b
  • 10.
    2. Intervalos Matemáticas -11º Infinitos a ( , ) /a x R x a [ , ) /a x R x a a a ( , ) /a x R x a ( , ] /a x R x a a
  • 11.
    2. Intervalos • Operacionesentre Intervalos: Dados dos intervalos A y B es posible realizar las operaciones: • Ejemplo: Dados los intervalos A = (-4, 2], B = [2, ∞), C = (-1, 3) Hallar: Matemáticas - 11º , , AyA B A B A B a) b) c) d)A B B C B B C
  • 12.
    2. Intervalos • Solución: a) b) Matemáticas- 11º -4 -3 -2 -1 0 1 2 3 4 5 6 A B 2A B -4 -3 -2 -1 0 1 2 3 4 5 6 A B B C B ( 1, )B CC
  • 13.
    2. Intervalos • c) •d) Matemáticas - 11º -4 -3 -2 -1 0 1 2 3 4 5 6B B ( , 2)B -4 -3 -2 -1 0 1 2 3 4 5 6 B C [3, )B C B C
  • 14.
  • 15.
    3. Inecuaciones • Propiedadesde las desigualdades: Sean a, b y c números reales Matemáticas - 11º 1) 2) 3) 0 4) y 0 Si y , entondes Si , Entonces , Si y , Entonces y Si , Entonces y a b b c a c a b a c b c a c b c a b a b c ac bc c c a b a b c ac bc c c
  • 16.
    3. Inecuaciones Una Inecuaciónes una desigualdad en la cual intervienen una o mas variables. • Resolver una Inecuación es hallar los valores de la variables que hacen verdadera la desigualdad. A estos valores se les llama conjunto solución. • Ejemplo: Hallar el conjunto solución de la siguiente inecuación Matemáticas - 11º 3 4 2x x
  • 17.
    3. Inecuaciones • Solución:Utilizando las propiedades de las desigualdades. Matemáticas - 11º 3 4 2 3 4 2 2 6 3 x x x x x x El conjunto solucion /es 3S x R x
  • 18.
    3. Inecuaciones • Ejemplo2: Hallar el conjunto solución de cada inecuación • Solución: a) Método Analítico: Matemáticas - 11º 2 2 2 2 7 4 2 5 3 0a 0 2 b 3 ) ) x x x x x x 2 Se consider 2 5 an 3 0 2 1 3 0 dos casos x x x x
  • 19.
    3. Inecuaciones • Caso1: • Caso 2: Uniendo las soluciones de ambos casos el conjunto solución es 2 1 0 3 0 2 1 3 1 3 2 1 , 3 , 3 2 1 , 3 2 x x x x x x 2 1 0 0 2 1 3 1 3 2 1 , 3, 2 x x x x x 1 , 3 2 Matemáticas - 11º
  • 20.
    3. Inecuaciones • a)Método Gráfico: Se hallan las raíces de los factores de la expresión factorizada y se ubica en la recta real: Antes de cada una de las raíces las expresiones son negativas. Después son positivas. . Nota: Las raíz de un polinomio es el valor o los valores de x para el cual el polinomio se hace cero P(x) = 0 Matemáticas - 11º y2 1 3x x
  • 21.
    3. Inecuaciones • Semultiplican los signos en ambas rectas, teniendo en cuenta las raíces Matemáticas - 11º -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 - - - - - - - - - - - - - - - - - - - - + + + + + + -4 -3 -2 -1 0 1 2 3 4 2 1x 3x 2 1 3x x - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + • Se requiere que (2x + 1)(x – 3) < 0, lo cual sucede en: 1 , 3 2
  • 22.
    3. Inecuaciones • b)Método Analítico: Factorizando: Por tratarse de una fracción Entonces Para que la fracción sea mayor o igual a cero se presentan dos casos Matemáticas - 11º 2 2 2 7 4 0 2 3 x x x x 2 1 4 0 3 1 x x x x 3 1 0x x 3 y 1x x
  • 23.
    3. Inecuaciones Matemáticas -11º 2 1 4 30 01xx xx 2 1 0 4 0 2 1 0 4 0 1 1 x 4 x 4 2 2 1 x 4 2 1 , 4 , 2 x x x x x x x 3 0 1 0 3 0 1 0 3 x 1 3 1 3 1 , 3 1, x x x x x x x x x Caso 1:
  • 24.
    3. Inecuaciones Matemáticas -11º 2 1 4 3 10 0x xx x 2 1 0 4 0 2 1 0 4 0 1 1 4 4 2 2 1 4, 2 x x x x x x x x Caso 2: 3 0 1 0 3 0 1 0 3 1 3 1 3, 1 x x x x x x x x
  • 25.
    3. Inecuaciones • Resolvemosla intersección para cada uno de los casos: Conjunto solución Matemáticas - 11º , 1 , 4 3 2 1,, -5 -4 -3 -2 -1 0 1 2 3 4 , 4 1,
  • 26.
    3. Inecuaciones Conjunto solución: Matemáticas- 11º 1 4, 2 3, 1 -5 -4 -3 -2 -1 0 1 2 3 4 1 3, 2 El conjunto solución final es la unión de las soluciones para cada caso 1 1, 3, , 2 4
  • 27.
    3. Inecuaciones • b)Método gráfico -5 -4 -3 -2 -1 0 1 2 1 4 3 1 x x x x 2 1x 3x 1x 4x -5 -4 -3 -2 -1 0 1 -5 -4 -3 -2 -1 0 1 -5 -4 -3 -2 -1 0 1 -5 -4 -3 -2 -1 0 1 - - - - - - - - - - - - - - - - - - - + + + + - - - - - + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - + + + + + + + + + + +- - + + +
  • 28.
    3. Inecuaciones • Ejercicios:Usando los métodos analítico y grafico, hallar los valores de x para los cuales se cumplen las siguientes desigualdades: 2 2 2 2 7 8 2 7 x 12 0 6 2 4 1 1) 4) 5) 3) 3 13 10 0 x 6 5 0 4x 13 2) 36) 0 x x x x x x x x Solo Analítico
  • 29.
    4. Valor absoluto Elvalor absoluto de un número real es su valor numérico sin tener en cuenta su signo. Por ejemplo 3 es el valor absoluto de 3 y de -3. • De manera genérica 0, donde,1) x a a x a x a 2) x a x a x a
  • 30.
    4. Valor absoluto •Otras propiedades del valor absoluto 2 3 0 ) 4) 5) 6) 7) a a ab a b aa b b b a b a b a a
  • 31.
    4. Valor absoluto •Ejemplo: Hallar los valores de x que satisfacen la siguiente ecuación: • Como se aplica la primera propiedad: • Por tanto el conjunto solución es 3 8 14x 14 0 3 8 14 o 3 8 14x x 22 2 o 3 x x 22 2, 3
  • 32.
    4.1 Inecuaciones convalor absoluto • Para resolver inecuaciones con valor absoluto, se tienen en cuenta las siguientes propiedades: 2 2 con 01. 2. o 3. x a a x a a x a x a x a x a x a
  • 33.
    4.1 Inecuaciones convalor absoluto • Ejercicios: Hallar los valores de x para los cuales se cumplen las siguientes inecuaciones con valor absoluto • Aplicando la primera propiedad: ) 2 9a x 9 7 9x 9 7 9 7x 2 16x
  • 34.
    4.1 Inecuaciones convalor absoluto • Entonces el conjunto solución esta dado por el intervalo: • Aplicando la segunda propiedad: • Por tanto el conjunto solución es: 2, 16 b) 2 5x 2 5 2 5ox x 3 x 7x , 7 3,