SlideShare una empresa de Scribd logo
Soluciones a las Preguntas breves
1. ¿Por qué decimos que los niveles de organización atómico y molecular son niveles abióticos mientras
que consideramos al nivel celular como un nivel biótico?
Porque las estructuras propias de los niveles atómico y molecular (átomos y moléculas) no están
dotadas de los atributos de la vida, mientras que las propias del nivel celular (las células) sí lo están.
2. Robert Hooke denominó cellulla a cada una de las celdillas que aparecían en el campo de su
microscopio cuando observaba láminas finas de corcho. ¿Eran en realidad células lo que
observaba? ¿Qué era realmente lo que estaba observando?
En realidad, el corcho o súber es un tejido muerto. Lo que observaba Hooke eran espacios vacíos (que
anteriormente habían estado ocupados por células vivas) rodeados de paredes celulares impregnadas en
suberina.
3. Los científicos del S XIX descartaron definitivamente la hipótesis de la "generación espontánea"
afirmando que toda célula procede por división de otra célula preexistente. Si hubieran podido viajar
en el tiempo y observar el océano de la Tierra hace unos 3000 millones de años es muy probable que
no fueran tan categóricos en su afirmación. ¿Cómo explicarías esta aparente contradicción?
Si aceptamos la teoría de Oparin acerca del origen de la vida sobre la Tierra, parcialmente corroborada por los
experimentos de Miller y Urey, en el océano primitivo de la Tierra, en unas condiciones ambientales muy
diferentes de las actuales, las primeras células vivas surgieron a partir de materia inanimada (las moléculas
orgánicas de la “sopa primigenia”). Este proceso podría concebirse como una suerte de “generación
espontánea”, aunque muy diferente de la que defendían muchos naturalistas anteriores a Pasteur.
4. El tamaño de las células vivas oscilaentre los 0,3 μm para las más pequeñas y los 100 μm para las más
grandes. ¿Por qué no existen células sensiblemente más pequeñas o más grandes?
El límite inferior de tamaño vendría dado por el volumen mínimo necesario para albergar la
maquinaria bioquímica imprescindible para mantener el estado vital.
El límite superior se explicaría atendiendo a que a medida que aumenta el tamaño de las células
disminuye su relación superficie/volumen y, con ella, la eficacia del intercambio de sustancias con su
entorno, que resulta esencial para la nutrición celular.
5. Completa la siguiente tabla indicando con un "Si" o un "No" la presencia o ausencia en los distintos
tipos celulares de los siguientes orgánulos, estructuras, componentes y procesos.
CÉLULA
PROCARIOTA
CÉLULA
ANIMAL
CÉLULA VEGETAL
Membrana Sí Sí Sí
Pared celular Sí No
Sí
Envoltura nuclear No Sí Sí
Ribosomas Sí Sí Sí
Mitocondrias No Sí Sí
Cloroplastos No No Sí
Citoesqueleto No Sí Sí
Centrosoma No Sí No
Microtúbulos No Sí Sí
Nucléolos No Sí Sí
Cromatina No Sí Sí
Flagelos Sí Sí Sí
Mitosis No Sí Sí
Endocitosis No Sí No
6.
7. ¿Por qué razón muchos tipos de células alteran la composición en ácidos grasos de los lípidos que
forman parte de sus membranas respondiendo a las variaciones de la temperatura ambiental? ¿Por
qué se hace necesaria la presencia de esteroles entre los lípidos de membrana?
El estado fluido de sus componentes es esencial para que las membranas puedan realizar buena
parte de sus funciones. El punto de fusión de las membranas varía en función de la composición en
ácidos grasos de sus lípidos constituyentes: cuanto mayor sea la proporción de ácidos grasos
insaturados menor será el punto de fusión. Así, alterando la composición en ácidos grasos de sus
lípidos constituyentes, las membranas pueden responder a variaciones de la temperatura ambiental
con el objeto de mantener en todo momento el estado fluido.
Los esteroles intercalados entre otros lípidos de membrana impiden que estos se agreguen
estableciendo entre sí interacciones de Van der Waals y ayudan así a mantener el estado fluido aun a
temperaturas bajas.
8. ¿Por qué decimos que la membrana plasmática es un mosaico fluido?
Se dice que es un mosaico porque la distribución de sus componentes moleculares recuerda a ese
tipo de composición artística característico de la antigua Roma. Y se dice que es fluido porque los
distintos componentes moleculares no ocupan posiciones fijas dentro de la estructura, sino que tienen
libertad de movimiento dentro de ella. Esta libertad de movimiento es característica del estado fluido.
9. Explica las diferencias entre las proteínas integrales y las proteínas periféricas de la membrana
plasmática. ¿Por qué las proteínas integrales tienden en general a precipitar cuando se las extrae de la
membrana?
Las proteínas integrales se encuentran íntimamente asociadas a la bicapa lipídica por lo que resultan
difíciles de extraer de la misma. Una parte sustancial de su molécula se encuentra sumergida en la
bicapa lipídica estableciéndose interacciones hidrofóbicas entre los grupos R de los restos de
aminoácidos no polares y las colas hidrocarbonadas de los lípidos.
Las proteínas periféricas tienen un grado de asociación con la bicapa mucho más débil: no
están sumergidas en ella. Se encuentran unidas a las cabezas polares de los lípidos o bien a proteínas
integrales mediante interacciones débiles, aunque algunas pueden aparecer ancladas covalentemente
a lípidos de la bicapa o a proteínas integrales.
Las proteínas integrales tienden a agregarse unas con otras y a precipitar cuando se las extrae
de la bicapa porque al hacerlo queda expuesto al agua su dominio no polar, que en condiciones
naturales está en contacto con las colas hidrocarbonadas de los lípidos.
10. ¿Cómo se genera la pared celular vegetal? ¿Cómo se disponen sus diferentes capas en función de su
mayor o menor proximidad a la membrana plasmática?
Los materiales que forman la pared celular resultan de la actividad secretora del aparato de Golgi.
Estos materiales se disponen en capas sucesivas que se van depositando desde fuera hacia dentro, de
manera que las más recientes son las que quedan en contacto con la membrana plasmática. La
primera capa en depositarse es la llamada lámina media, después se van depositando sucesivamente
las tres capas de la pared primaria y luego las sucesivas capas de la pared secundaria.
11. Después de una precipitación intensa el suelo queda totalmente encharcado y las células de las raíces
de las plantas que habitan en él se ven rodeadas de un medio fuertemente hipotónico con respecto a
su interior. ¿Cómo consiguen estas células resistir la elevada presión osmótica a la que se ven
sometidas?
Gracias a la gran resistencia mecánica de su pared celular, capaz de resistir sin romperse presiones
osmóticas muy elevadas. Además de proteger así a sus las células de la raíz, el flujo osmótico así
controlado se utiliza para bombear la savia bruta hacia las partes más elevadas de la planta.
12. Las células musculares estriadas presentan unas estructuras repetitivas denominadas sarcómeros que
son las responsables del fenómeno de la contracción muscular. ¿Cuál es la composición química de
estas estructuras? ¿En qué parte de la célula las encuadrarías?
Los sarcórmeros están constituidos por filamentos proteicos de las proteínas actina y miosina
fundamentalmente. Estos filamentos forman parte del citoesqueleto.
13. En ocasiones, los microtúbulos dispersos del citoesqueleto se organizan para dar lugar a estructuras
más concretas que pueden ser más o menos permanentes en la célula.¿Cuáles son esas estructuras?
· Los centriolos (en el centrosoma)
· Los corpúsculos basales de cilios y flagelos
· El huso mitótico
14. ¿A qué llamamos diplosoma? ¿Cuál es su composición y estructura?
El diplosoma es la pareja de centriolos que ocupan la zona central del centrosoma.
Cada centriolo consiste en un cilindro hueco cuya pared está compuesta por nueve tripletes de
microtúbulos.
15. ¿Qué analogías y diferencias existen entre un centriolo, un corpúsculo basal de un cilio o flagelo, y
el axonema del mismo?
Un centriolo y un corpúsculo basal de un cilio o flagelo tienen exactamente la misma estructura: nueve
tripletes de microtúbulos (9x3). El axonema de un cilio o flagelo presenta una estructura similar,
formada por nueve pares de microtúbulos periféricos y un par de microtúbulos centrales: (9x2)+2
16. Define mediante una frase corta los siguientes términos: ribosoma, lisosoma, nucleosoma,
cromosoma, dictiosoma, peroxisoma, diplosoma, mesosoma.
 Ribosoma.- Orgánulo formado por rRNA proteínas responsable de la síntesis de las
proteínas celulares
 Lisosoma.- Orgánulo membranoso que alberga enzimas hidrolíticos responsables de la
digestión celular.
 Nucleosoma.- Unidad básica de la fibra de cromatina, formada por 20 pares de bases de
DNA y un octámero de proteínas histónicas.
 Cromosoma.- Estructura con forma de bastoncillo que resulta de la condensación de la
cromatina. Está formado, como ella, por DNA y proteínas histónicas.
 Dictiosoma.- Cada una de las pilas de sáculas aplanadas que forman el aparato de Golgi.
 Peroxisoma.- Orgánulo membranoso que alberga en su interior enzimas oxidativos.
 Diplosoma.- Par de centriolos que ocupa la parte central del centrosoma.
 Mesosoma.- Invaginación de la membrana plasmática de la célula procariota, que
contiene las cadenas de transporte electrónico responsables de la respiración celular.
16. ¿En qué lugares de la célula eucariota podemos encontrar a los ribosomas?
· Libres en el citosol
· Adheridos a las membranas del retículo endoplasmático rugoso
· En el interior de mitocondrias y cloroplastos
17. Describe el camino que ha de seguir y las modificaciones que ha de experimentar una glucoproteína
desde el momento en que es sintetizada hasta que queda definitivamente emplazada en la bicapa
lipídica de la membrana plasmática.
La proteína se sintetiza en un ribosoma de retículo endoplasmático rugoso y queda incrustada en la
membrana de este orgánulo, donde sufrirá algunas modificaciones incluyendo la adición de cadenas
oligosacarídicas. De allí sale formando parte de la membrana de una vesícula de transición que se
dirige a la cara cis del aparato de Golgi para fundirse con la primera sácula de este orgánulo. A
continuación irá pasando por las distintas sáculas donde sufrirán nuevas modificaciones por los
enzimas allí presentes (incluyendo la adición o eliminación de algunos componentes de sus cadenas
oligosacarídicas). Ya en la cara trans del aparato de Golgi se incorporará a la membrana de una
vesícula secretora, que se dirigirá a la membrana plasmática incorporándose a ella por exocitosis. La
proteína en cuestión quedará así incorporada a la membrana plasmática.
18. ¿Por qué decimos que el aparato de Golgi está estructural y bioquímicamente polarizado?
Porque presenta dos caras: una cara cis a la que llega el tráfico de macromoléculas procedente del retículo
endoplasmático, y una cara trans de la que sale el tráfico de macromoléculas para dirigirse a los distintos
destinos celulares.
19. ¿Con qué objeto la membrana de los lisosomas presenta una proteína que bombea iones hidrógeno
desde el hialoplasma hacia el interior del lisosoma?
Esta proteína, al bombear protones hacia el interior del lisosoma, hace que allí se produzca un
descenso del pH, que se aproxima así al pH óptimo de los enzimas hidrolíticos contenidos en el
lisosoma.
20. Expón dos razones por las que los enzimas hidrolíticos albergados en el interior de los lisosomas no
degradan las biomoléculas localizadas en el citosol.
· La membrana del lisosoma lo impide manteniendo a los enzimas confinados en su
interior.
· Aun en caso de rotura de la membrana del lisosoma, el pH del citosol (próximo a 7) no
es el idóneo para la acción de los enzimas hidrolíticos allí albergados.
21. Explica la diferencia esencial entre vacuolas e inclusiones.
Las vacuolas son enclaves rodeados de membrana que albergan sustancias hidrosolubles. Las
inclusiones carecen de membrana y almacenan sustancias insolubles en agua.
22. Una célula dispone en un momento dado de las siguientes sustancias para
almacenar: glucosa, glucógeno, triacilglicéridos, aminoácidos. Razona en qué tipo de enclave
citoplasmático se debería almacenar cada una de ellas.
· En vacuolas.- glucosa y aminoácidos (hidrosolubles)
· En inclusiones.- Glucógeno y triacilglicéridos (insolubles en agua).
23. ¿Qué rasgos distintivos presenta la membrana mitocondrial interna comparada con otras membranas
celulares?
· Es más rica en proteínas (80% aprox)
· Carece de esteroides.
24. Señala algunas de las analogías entre las mitocondrias y las bacterias actuales que apoyen la teoría
del origen endosimbionte de estos orgánulos.
· Presencia de DNA en forma de una sola molécula circular
· Presencia de ribosomas con estructura similar y a su vez diferentes de los del citosol
eucariota
· Tamaños similares.
· Enzimas respiratorios y ATP sintetasa en la membrana.
25. Haz un esquema de una mitocondria y señala en él las dos membranas y los diferentes
compartimientos que delimitan.
26. ¿Por qué las patatas "verdean" superficialmente cuando se las expone durante mucho tiempo a la luz?
Porque los amiloplastos de las células parenquimatosas de la patata, que albergan el almidón de
reserva, al quedar expuestos a la luz comienzan a sintetizar clorofila para transformarse en
cloroplastos.
27. Haz un esquema de un cloroplasto y señala en él las tres membranas y los diferentes compartimientos
que delimitan.
28. ¿Qué rasgos distintivos presenta la membrana tilacoidal comparada con otras membranas celulares?
El más significativo es la presencia de pigmentos fotosintéticos: clorofilas y carotenoides. Estos
pigmentos están ausentes en otras membranas celulares, incluyendo a las otras membranas del
cloroplasto.
29. ¿A qué llamamos espacio perinuclear? ¿Con qué otro compartimiento subcelular se comunica?
Es el espacio delimitado por las dos membranas que forman la envoltura nuclear. Se comunica con
la luz del retículo endoplasmático.
30. ¿Qué similitudes y diferencias existen entre la cromatina y los cromosomas?
La composición de ambas estructuras es idéntica: DNA e histonas a partes aproximadamente
iguales. La diferencia entra ambas está en el grado de empaquetamiento, que es mínimo en la
cromatina mientras que adquiere su mayor grado en el cromosoma metafásico.
31. ¿A qué llamamos cariotipo de una especie?
Al conjunto de cromosomas característico de esa especie.
32. Cuando se observan las fibras de cromatina al microscopio electrónico aparecen unas estructuras
repetitivas a las que se ha dado en llamar "el collar de perlas". ¿En qué consiste esta estructura?
El “collar de perlas” es una sucesión de nucleosomas (unos 10 nm de grosor). El nucleosoma es la
unidad básica de la cromatina. Está formado por un octámero de histonas con una doble cadena de
DNA de unos 200 nucleótidos de longitud arrolada alrededor de él.
33. ¿Qué ventaja representa para las células eucariotas empaquetar sus moléculas de DNA junto con
proteínas histónicas?
Las proteínas histónicas son ricas en aminoácidos con carga positiva en su cadena lateral R. Estas
cargas positivas neutralizan a las cargas negativas presentes en los grupos fosfato del DNA, eliminando
así la repulsión electrostática entre ellas. Ello favorece un mayor empaquetamiento del DNA.
34. Tanto las células eucariotas como las procariotas disponen de una serie de proteínas transportadoras
de electrones que intervienen en el proceso de respiración celular, así como un enzima encargado de
sintetizar el ATP. ¿En dónde se localizan estas proteínas en uno y otro tipo de célula?
· Eucariotas.- En la membrana mitocondrial interna.
· Procariotas.- En la membrana plasmática.
35. ¿Qué diferencias existen entre la pared celular de la célula vegetal y la de la célula procariota?
· Pared celular vegetal.- Compuesta por celulosa y cemento de unión rico en
heteropolisacáridos.
· Pared celular procariota.- Compuesta por peptidoglicano.
36. ¿Qué diferencias existen entre los cromosomas de las células eucariotas y los de las células
procariotas?
· Cromosomas eucariotas.- Múltiples moléculas lineales de DNA.
· Cromosomas procariotas.- Una sóla moléculas de DNA circular.
37. ¿Por qué decimos que la membrana plasmática presenta permeabilidad selectiva?
Porque permite el paso a través de ella de determinadas sustancias mientras que impide o
limita el de otras.
38. ¿Puede una sustancia atravesar la membrana plasmática en contra de gradiente de concentración
por transporte pasivo? ¿En qué casos? ¿Qué tipo de gradiente determinaría la dirección del transporte
en tales casos?
Sí, es posible. Cuando se trata de sustancias iónicas, que pueden pasar en contra de su
gradiente de concentración si lo hacen a favor de un gradiente de potencial eléctrico. En estos
casos la determinación de la dirección del transporte viene dada por una combinación de los
gradientes eléctrico y de concentración: el gradiente electroquímico.
39. Teniendo en cuenta que la vitamina A es una sustancia liposoluble ¿por qué modalidad de transporte
crees que podrá atravesar la membrana plasmática?
Por difusión simple a través de la bicapa lipídica.
40. ¿A qué llamamos gradiente electroquímico a través de una membrana?
A una combinación de los gradientes eléctrico y de concentración de esa sustancia.
41. Teniendo en cuenta que el interior de la célula está cargado negativamente con respecto al exterior
(hay más cargas negativas dentro que fuera) ¿crees que el aminoácido arginina (ver Tabla 8.1) podría
entrar en la célula por difusión facilitada?
La arginina es un aminoácido con carga neta positiva. Podría entrar por difusión facilitada,
incluso aunque el gradiente de concentración sea desfavorable, ya que lo haría a favor de
gradiente eléctrico.
42. Muchas células son capaces de incorporar glucosa al citosol en contra de gradiente de concentración a
través de una proteína de la membrana que no consume ATP, sino que utiliza la energía almacenada
en un gradiente electroquímico previamente establecido por la bomba de Na+-K+. ¿Cómo se denomina
esta modalidad de transporte?
Transporte activo secundario (o cotransporte).
43. ¿De dónde procede la energía que utiliza la bomba de Na+-K+ para bombear estos iones a través de la
membrana en contra de sus respectivos gradientes?
De la hidrólisis del ATP por acción enzimática de la propia bomba.
44. Los distintos compartimientos subcelulares tienen en general una composición química diferente de la
del citosol circundante. ¿Cómo explicarías este fenómeno?
Sus membranas, al igual que la membrana plasmática, también ejercen una permeabilidad
selectiva.
45. Señala los mecanismos por los que crees que podrán entrar en la célula las siguientes sustancias: agua,
glucosa, oxígeno, CO2, aminoácidos, proteínas polisacáridos.
· Difusión simple.- agua, oxígeno, CO2
· Difusión facilitada o transporte activo.- glucosa, aminoácidos.
· Endocitosis.- proteínas, polisacáridos.
46. ¿Cuál es el papel de la clatrina en los procesos de endocitosis?
Provocar la deformación de la membrana plasmática que propicia la formación de la
vesícula endocítica.
47. ¿En qué se diferencian pinocitosis y fagocitosis?
En el tamaño de las partículas incorporadas y en el tamaño de las vesículas endocíticas en
que se incorporan.
48. ¿En qué consiste la pinocitosis mediada por receptores específicos? ¿Qué ventaja representa para las
células frente a la pinocitosis convencional?
Receptores específicos de la membrana interactúan con la molécula que se va a incorporar
fijándola en una zona de la membrana previamente a la pinocitosis
Permite incorporar eficazmente sustancias que se encuentran a baja concentración en el medio
extracelular.
49. Una célula acaba de incorporar dentro de una vesícula endocítica un agregado supramolecular
formado por proteínas y polisacáridos. Indica qué acontecimientos tendrán lugar desde este momento
hasta que los nutrientes incorporados pasen a formar parte de la maquinaria bioquímica de la célula.
Un lisosoma procedente del aparato de Golgi se funde con la vesícula endocítica
permitiendo que los enzimas hidrolíticos que contienen actúen sobre el contenido de ésta. Los
enzimas hidrolíticos romperán los enlaces glucosídicos de los polisacáridos y los enlaces
peptídicos de las proteínas dando lugar a una mezcla de monosacáridos y aminoácidos. Éstos
últimos podrán ahora atravesar la membrana de la vesícula pos distintas modalidades de
transporte y, ya en el citosol, incorporarse a la maquinaria celular.
50. Indica cuál será el resultado de la digestión celular de cada uno de los siguientes tipos de
biomoléculas: proteínas, polisacáridos, triacilglicéridos, oligosacáridos, fosfoglicéridos, nucleótidos,
ácidos nucleicos.
· Proteínas: aminoácidos
· Polisacáridos: monosacáridos
· Triacilglicéridos: glicerina y ácidos grasos.
· Oligosacáridos: monosacáridos
· Fosfoglicéridos.- glicerina, ácidos grasos, ácido fosfórico y compuestos polares.
· Nucleótidos.- Pentosas, bases nitrogenadas, ácido fosfórico.
· Ácidos nucleicos: nucleótidos y sus componentes.
51. ¿Por qué algunas sustancias deben ser sometidas a un proceso de digestión celular antes de ser
incorporadas a la maquinaria bioquímica de la célula? ¿A qué tipos de sustancias nos referimos?
Porque o bien no pueden incorporarse a la célula a través de sus membranas o bien porque
aunque pudiesen, no serían útiles por ser ajenas a la célula. Se trata de las macromoléculas
(proteínas, polisacáridos, etc.) que forman parte del alimento celular.
52. ¿Qué ventajas representa para los organismos unicelulares la digestión intracelularfrente a la
digestión extracelular?
El concentrar previamente el alimento en una vesícula endocítica aumenta la eficacia de los
enzimas hidrolíticos, cuya acción se dispersaría rápidamente en el medio extracelular.
53. ¿Qué tipo de reacciones químicas intervienen en el proceso de digestión celular? ¿Qué tipo de enzimas
catalizan estas reacciones?
Reacciones de hidrólisis catalizadas por las hidrolasas ácidas de los lisosomas.
54. ¿Qué diferencia hay entre la digestión intracelular autofágica y la heterofágica?
La procedencia del alimento: intracelular en la autofágica, y extracelular en la heterofágica.
55. ¿Todas las células de un organismo pluricelular tienen la misma información genética? Razona la
respuesta.
Sí, porque todas proceden, por sucesivas mitosis, de una sola célula (el zigoto).
56. En el supuesto de que se pudiesen distinguir los cromosomas como entidades individualizadas a lo
largo de todo el ciclo celular, indica en cuales de las siguientes fases se encontrarían divididos
longitudinalmente en dos cromátidas hermanas y en cuales no: telofase, período G1, período G2,
profase, período S, anafase, metafase. Señala cuáles de ellas pertenecen a la interfase y cuáles a
la mitosis.
Divididos en cromátidas.- G2, profase, metafase
No divididos en cromátidas.- anafase, telofase, G1
En el período S no están divididos al comienzo y sí al final.
Mitosis.- Profase, metafase, anafase y telofase
Interfase.- G1, S y G2
57. ¿Por qué consideramos poco adecuado denominar a la interfase período de reposo?
Porque, aunque las manifestaciones citológicas son poco evidentes, es un período en el que la
célula despliega una intensa actividad bioquímica, en la que destaca la replicación de su
material genético.
58. ¿A qué llamamos placa metafásica?
A la hilera de cromosomas alineados que se disponen en este período en el plano ecuatorial
de la célula.
59. ¿Cuál es la diferencia entre los microtúbulos cinetocóricos y los microtúbulos polaresdel huso mitótico?
Los microtúbulos cinetocóricos se encuentran unidos a cromosomas mientras que los
polares no lo están.
60. ¿Por qué en la citocinesis de células vegetales no es posible la formación de un surco de
segmentación semejante al que aparece en el caso de las células animales?
Porque la rígida pared celular vegetal impide cualquier deformación de la célula.
61. ¿Qué orgánulo interviene en la citocinesis de las células vegetales que no lo hace en la de las células
animales?
El aparato de Golgi, a partir de cuyas vesículas secretoras se forma el fragmoplasto que
terminará por consumar la citocinesis.
62. De las siguientes fases de la división celular meiótica distingue en cuales los cromosomas aparecerán
divididos longitudinalmente en dos cromátidas hermanas y en cuales no: profase I, metafase I, anafase
I, telofase I, profase II, metafase II, anafase II, telofase II.
· Divididos en cromátidas.- Profase I, metafase I, anafase I, telofase I, profase II, metafase II.
· No divididos en cromátidas.- Anafase II y Telofase II.
63. ¿Cuál es la diferencia esencial entre la anafase de la mitosis y la anafase de la primera división
meiótica?
En la anafase mitótica los cromosomas ya no están divididos en cromátidas hermanas,
mientras que en la anafase I sí lo están.
64. ¿Por qué es necesaria una segunda división meiótica?
Para separar las cromátidas hermanas, que tras la primera división meiótica permanecen
unidas por sus centrómeros.
65. ¿Cuál es el significado biológico de la meiosis? ¿Con qué tipo de reproducción se encuentra asociada?
La reducción a la mitad del número de cromosomas en la meiosis es necesaria para
compensar la duplicación del número de cromosomas que trae consigo la fecundación. Se
encuentra asociada a la reproducción sexual.
66. ¿En qué consiste el entrecruzamiento que tiene lugar durante la profase de la primera división
meiótica? ¿Cuál es el significado biológico de este proceso?
El entrecruzamiento es el intercambio de fragmentos entre cromosomas homólogos.
Aumenta considerablemente el número de combinaciones de genes de origen paterno y
materno que genera la meiosis.
67. ¿Cuál es la diferencia entre la reproducción asexual y la reproducción sexual?
Reproducción asexual.- Interviene un solo individuo que da lugar a copia exactas de sí
mismo.
Reproducción sexual.- Intervienen dos individuos dando lugar a una progenie con distintas
combinaciones genéticas de ambos.
68. ¿A qué llamamos cromosomas homólogos? ¿Cuál es la diferencia entre una dotación
cromosómica haploide y una diploide?
Llamamos cromosomas homólogos a aquellos que llevan información para los mismos
caracteres. Una dotación haploide consta de n cromosomas, todos ellos con información para
diferentes caracteres. Una dotación diploide consta de n pares de cromosomas homólogos.
69. ¿Cuántas células resultan de una división meiótica completa? ¿Qué tipo de dotación cromosómica
tendrán dichas células?
Cuatro células haploides.
70. Algunos organismos unicelulares tienden a acercarse a cualquier fuente luminosa. ¿Cómo llamarías a
este tipo de movimiento celular? Distingue en este comportamiento cual es el estímulo y cual es la
respuesta.
Se trataría de un fototropismo positivo. El estímulo es la luz y la respuesta el movimiento.
71. Las células del hígado alteran su metabolismo ante la presencia de distintas hormonas en el medio
extracelular. ¿Cuál sería en este caso el estímulo y cuál la respuesta?
El estímulo sería la unión de la hormona a su receptor celular y la respuesta sería la
alteración metabólica.
72. ¿A qué llamamos conjugación bacteriana? ¿Por qué decimos que es una forma primitiva de
sexualidad?
A la transferencia de fragmentos de material genético de unas células bacterianas a otras.
Porque genera células mixtas, que reúnen información genética procedente de dos células
distintas.
73. ¿Por qué decimos que las células vivas son máquinas químicas?
Porque obtienen la energía de su entorno en forma de energía química, bien de los propios nutrientes (células
organótrofas) o bien de las biomoléculas que sintetizan a expensas de la energía luminosa (células fotótrofas),
y la manipulan en forma de tal energía química para edificar y mantener sus propias y complejas estructuras.
74. Los enzimas consiguen que las reacciones químicas desfavorables termodinámicamente (ΔGº>0) se
tornen favorables. ¿Qué opinas de esta afirmación?
Es falsa. Los enzimas reducen la barrera de energía de activación, con lo que aceleran la velocidad de
reacción, pero no afectan a la variación total de energía libre (ΔGº), que permanece inalterada.
75. Los enzimas no alteran los equilibrios termodinámicos de las reacciones químicas, pero consiguen que
dichos equilibrios se alcancen más rápidamente de lo que sucedería en ausencia de enzima. ¿Qué
opinas de esta afirmación?
Es correcta. Al conseguir reducir la barrera de energía de activación, aumentan la velocidad a la que
transcurren las reacciones químicas que catalizan
76. ¿A qué llamamos energía libre de activación de una reacción química?
A la diferencia entre la energía libre de los reactivos y la energía libre del estado de transición.
77. ¿Qué importancia tuvo para la Bioquímica el descubrimiento, debido a E. Büchner, de que los enzimas
pueden actuar independientemente de la estructura celular?
Permitió estudiar "in vitro" la estructura y función de los enzimas.
78. ¿Se puede afirmar en la actualidad que todos los enzimas son proteínas? Razona la respuesta.
Casi todos lo son. Pero existe un reducido grupo de moléculas de RNA con capacidad enzimática. Se
denominan ribozimas.
79. ¿Qué tipos de aminoácidos podemos encontrar en el centro activo de un enzima y cuáles son sus
funciones?
 Aminoácidos catalíticos.- Sus cadenas laterales R poseen propiedades que les permiten actuar
como catalizadores .
 Aminoácidos de unión.- Sus cadenas laterales R poseen grupos funcionales capaces de
establecer interacciones débiles con grupos funcionales complementarios de la molécula de
sustrato, contribuyendo a fijar a ésta al centro activo.
80. ¿En qué consiste el efecto de saturación del enzima por el sustrato?
Cuando se mide la velocidad inicial de una reacción catalizada enzimáticamente se observa que para
concentraciones de sustrato bajas la velocidad de reacción es proporcional a dicha concentración, como
ocurre con carácter general para las reacciones no enzimáticas. A medida que la concentración de sustrato
aumenta la velocidad de reacción deja de ser proporcional a ésta. Con un aumento posterior la velocidad de
reacción llega a ser totalmente independiente de la concentración del sustrato y se aproxima
asimptóticamente a un valor máximo que es característico de cada enzima y que se conoce como velocidad
máxima. Se dice entonces que el enzima se halla saturado por el sustrato.
81. ¿A qué llamamos constante de Michaelis-Menten de un enzima? ¿Cuál es el significado biológico de
dicha constante?
La Km es la concentración de sustrato para la cual el enzima alcanza la mitad de su velocidad máxima
característica. Constituye una medida de la afinidad del enzima por el sustrato. Valores altos de
KM denotan baja afinidad, mientras que valores bajos denotan alta afinidad.
82. ¿Por qué decimos que la hipótesis del complejo enzima-sustrato explica satisfactoriamente el efecto
de saturación del enzima por su sustrato?
Porque, si el enzima y el sustrato forman un complejo en el que se alcanza el estado de transición,
llegará un momento al aumentar la concentración de sustrato en el que todos los centros activos de
las moléculas de enzima estén ocupados por moléculas de sustrato. A partir de este momento,
posteriores aumentos en la concentración de sustrato no provocarán ya aumentos en la velocidad de
reacción (las moléculas de sustrato adicionales tendrán que “esperar” a que quede algún centro activo
vacío para poder acceder a él).
83. Desarrolla el concepto de energía de fijación entre el enzima y el sustrato. Comenta brevemente el
papel que juega la energía de fijación en la actividad de los enzimas.
Cuando el sustrato se fija al centro activo se establecen entre ambos una serie de interacciones débiles,
energéticamente favorables, entre grupos funcionales complementarios de ambos. La energía liberada al
formarse estas interacciones se conoce como energía de fijación. Diversas consideraciones físico-químicas han
llevado a la conclusión de que la energía de fijación es la principal fuente de energía que utilizan los enzimas
para llevar a sus sustratos al estado de transición, salvando así la barrera de energía de activación.
84. ¿Por qué resulta inadecuada la imagen de la llave y la cerradura para referirse a la interacción entre el
sustrato y el enzima? ¿Qué otra imagen podría resultar más adecuada y por qué?
En muchas reacciones enzimáticamente catalizadas el centro activo no es exactamente complementario con
la molécula(s) de sustrato, sino más bien con las especies del estado de transición. El enzima distorsiona la
estructura química del sustrato llevándolo al estado de transición. A la vista de estas consideraciones se ha
propuesto el modelo "mano-guante", que quizás ilustre mejor este tipo de interacción.
85. ¿Por qué decimos que el grado de especificidad de los enzimas es muy variado?
Porque algunos de ellos reconocen a una única especie molecular y a ninguna otra aunque se le
parezca, mientras que otros reconocen una gama más o menos amplia de moléculas con algún rasgo
estructural común.
86. ¿A qué llamamos pH óptimo de un enzima? ¿Por qué los enzimas pierden su actividad a valores de pH
alejados de su pH óptimo?
pH óptimo es aquél para el que la actividad del enzima es máxima. Los enzimas pierden su activadad
cuando el pH se aleja de su valor óptimo porque se desnaturalizan como consecuencia del cambio en
el pH.
87. ¿Qué diferencia existe entre la inhibición enzimática competitiva y la incompetitiva?
 Inhibición competitiva.- El inhibidor tiene una estructura química similar a la del sustrato y
compite con él por el acceso al centro activo. Cuando el inhibidor está ocupando el centro
activo impide al sustrato el acceso a éste.
 Inhibición incompetitiva.- El inhibidor no guarda parecido con el sustrato. No se une al centro
activo bloqueando su acceso sino al complejo enzima-sustrato bloqueando la liberación de los
productos.
88. ¿Por qué son necesarios los enzimas reguladores? ¿Qué tipos de enzimas reguladores conoces?
Son necesarios porque la célula se rige por un principio de economía molecular que la obliga a no
desperdiciar tiempo ni energía en procesos que no le son útiles en un momento dado. Ello se consigue,
entre otros mecanismos, por medio de los enzimas reguladores, que “apagan” o “encienden”
determinadas rutas metabólicas.
Los enzimas reguladores son de dos tipos: enzimas alostéricos y enzimas modulados covalentemente.
89. ¿A qué llamamos enzimas alostéricos? ¿Y moduladores alostéricos? ¿Qué tipos de moduladores
alostéricos conoces?
Son enzimas que, además del centro activo a través del cual interactúan con el sustrato, disponen
de otro centro de unión, el centro alostérico, a través del cual interactúan con una molécula
denominada efector o modulador. El modulador es responsable de la interconversión entre las formas
activa e inactiva del enzima.
90. ¿En qué consiste el control feed-back o inhibición por el producto final?
Es un tipo de control del metabolismo en el que uno de los primeros enzimas de una ruta metabólica
es un enzima alostérico que resulta inhibido por el producto final de la ruta. Se trata de un control
heterotrópico por modulador negativo.
91. Señala las principales diferencias entre los enzimas alostéricos y los enzimas modulados
covalentemente.
Enzimas alostéricos.- Presentan dos formas, una activa y otra inactiva, que difieren en su conformación
tridimensional y se interconvierten por acción de un modulador que interactúa con ellas
Enzimas modulados covalentemente.- Presentan dos formas, una activa y otra inactiva, que se
interconvierten por modificación covalente de algún grupo químico de sus cadenas polipeptídicas. La
modificación covalente está catalizada por un segundo enzima llamado enzima modulador.
92. ¿A qué llamamos zimógenos? ¿Cómo se activan?
Los zimógenos son las formas inactivas en las que son sintetizados algunos enzimas. Se activan por
modificación química (eliminación de tramos de la cadena polipeptídica) catalizada por otros enzimas.
93. ¿De qué maneras pueden actuar los iones metálicos como cofactores enzimáticos?
· Como centro catalítico primario del enzima
· Como grupo puente para la unión del sustrato
· Como agente estabilizador de la conformación tridimensional activa del enzima.
94. Explica la relación que existe entre coenzimas y vitaminas.
Algunas vitaminas son precursores químicos a partir de los cuales las células pueden sintetizar algunos de sus
coenzimas.
95. Explica por qué las necesidades exógenas de vitaminas varían ampliamente de unas especies a otras.
Una vitamina es, por definición, una sustancia que un organismo dado es incapaz de sintetizar y por lo tanto
necesita incorporar a partir de su entorno. La misma sustancia puede ser sintetizada por un organismo
diferente, por lo que para éste no será una vitamina.
96. ¿A qué llamamos rutas metabólicas?
A secuencias de reacciones químicas consecutivas, enzimáticamente catalizadas, y ligadas por
intermediarios comunes.
97. Enuncia las principales diferencias entre el catabolismo y el anabolismo.
· Catabolismo.- proceso degradativo, oxidante y exergónico
· Anabolismo.- proceso constructivo, reductor y endergónico.
98. ¿Qué es una ruta anfibólica? Pon un ejemplo que conozcas.
Es una ruta que es compartida por el catabolismo y el anabolismo. Un ejemplo es el ciclo de Krebs.
99. ¿Podría una célula quimiótrofa utilizar el CO2 como fuente de carbono? ¿Cómo llamarías a este tipo de
célula?
Sí. Se trataría de una célula quimiolitótrofa.
100. Las células anaerobias no pueden utilizar el oxígeno como aceptor último de electrones en las
reacciones redox que utilizan para obtener energía. ¿Qué tipo de compuestos utilizan? Pon algún
ejemplo de este tipo de compuestos.
Utilizan moléculas orgánicas que resultan reducidas. Tal es el caso del ácido pirúvico que resulta de la
glucolisis, al que las células anaerobias reducen a ácido láctico.
101. Haz una clasificación de los distintos tipos celulares atendiendo simultáneamente a las fuentes
de carbono y energía que utilizan para su metabolismo.
TIPO DE CÉLULA FUENTE DE MATERIA FUENTE DE ENERGÍA
Fotolitótrofas Materia inorgánica Luz
Fotoorganótrofas Materia orgánica Luz
Quimiolitótrofas Materia inorgánica Reacciones redox
Quimioorganótrofas Materia orgánica Reacciones redox
102. ¿Cuándo podemos decir que una célula es anaerobia facultativa? Pon un ejemplo de este tipo
de células.
Una célula anaerobia facultativa es aquélla que puede utilizar el oxígeno como aceptor de electrones
paras sus oxidaciones respiratorias, pero que puede utilizar la fermentación láctica como mecanismo
de emergencia durante cortos períodos en los que escasea el oxígeno.
Un ejemplo son las células musculares.
103. Las células de las hojas de las plantas verdes ¿son fotolitótrofas en todas las situaciones?
Justifica la respuesta.
No, en ausencia de luz funcionan en modo quimioorganótrofo.
104. La obtención de ATP a partir de ADP y fosfato inorgánico se denomina fosforilación¿qué tipos
de fosforilación conoces? Rastrea las rutas catabólicas que hemos estudiado y localiza en ellas dos
ejemplos de fosforilación a nivel de sustrato.
 Fosforilación a nivel de sustrato.- La energía liberada en la rotura de un enlace de una
biomolécula es directamente utilizada para formar el enlace fosfato del ATP.
 Fosforilación acoplada al transporte electrónico
o Fosforilación acoplada al transporte electrónico mitocondrial (fosforilación oxidativa).
o Fosforilación acoplada al transporte electrónico fotosintético (fotofosforilación).
En la segunda fase de la glucolisis se dan dos fosforilaciones a nivel de sustrato que rinden las
dos moléculas de ATP que se obtienen. Durante el ciclo de Krebs, en la etapa en la que el
succinil-CoA da lugar al succinato, también tiene lugar una fosforilación de este tipo.
105. ¿Por qué decimos que el ATP es la moneda energética de la célula?
Porque la variación de energía libre que supone la hidrólisis o la formación de su enlace fosfato
terminal supone una dosis energética adecuada para muchas de las reacciones químicas celulares.
106. Escribe las formas oxidada y reducida de dos coenzimas transportadores de electrones.
 Forma oxidada: NAD+ / Forma reducida: NADH
 Forma oxidada: FAD / Forma reducida: FADH2
107. ¿Por qué decimos que la degradación de los glúcidos se lleva a cabo "vía glucosa"?
Porque para ser degradados, todos los glúcidos se transforman en glucosa o en algún producto de sus
rutas degradativas.
108. ¿En qué lugar de la célula tiene lugar la glucolisis? ¿De qué compuesto parte esta ruta
metabólica? ¿Qué compuestos se obtienen al final de la misma?
Lugar.- citosol
Compuesto de partida.- glucosa.
Productos finales.- 2 piruvato, 2 ATP, 2 NADH
109. ¿A qué llamamos fermentación? ¿Con qué objeto llevan a cabo las células este proceso?
Son reacciones químicas adicionales a la glucolisis en las que la transformación del piruvato en otros
compuestos es aprovechada para reciclar los coenzimas transportadores de electrones de esta ruta
metabólica.
110. Cita dos tipos de fermentación que conozcas y señala en cada uno de ellos cuál es el aceptor
último de electrones.
Fermentación láctica.- el aceptor es el piruvato, que se transforma en lactato.
Fermentación alcohólica.- el aceptor es el acetaldehído (resultado de la descarboxilación del piruvato),
que se reduce a etanol.
111. ¿Para qué utilizan las células la ruta de las pentosas?
 Para obtener pentosas para la síntesis de nucleótidos.
 Para obtener poder reductor en forma de NADPH para la síntesis de ácidos grasos.
112. ¿En qué lugar de la célula tiene lugar el ciclo de Krebs? Indica los compuestos que entran y
salen del ciclo en cada vuelta.
Lugar.- Matriz mitocondrial
Entrada.- 1 grupo acetilo del acetil-CoA
Salida.- 2 CO2, 1 GTP, 3 NADH, 1 FADH2
113. ¿De dónde procede el acetil-CoA que entra en el ciclo de Krebs?
· De la descarboxilación oxidativa del piruvato que resulta de la glucolisis.
· De la beta oxidación de los ácidos grasos.
114. ¿Por qué decimos que el transporte electrónico mitocondrial es un proceso "cuesta abajo"?
Porque transcurre desde buenos dadores de electrones (sustancias que tienden a ceder electrones) a
buenos aceptores (sustancias que tienden a aceptarlos), por lo que es un proceso exergónico, o
termodinámicamente favorable.
115. ¿De dónde proceden los electrones que son transportados hasta el oxígeno por la cadena de
transporte electrónico mitocondrial?
De los coenzimas reducidos (NADH Y FADH2) que se van obteniendo en las distintas rutas del
catabolismo (glucolisis, ciclo de Krebs, beta oxidación de los ácidos grasos, etc.).
116. ¿Cómo llega a la cadena de transporte electrónico mitocondrial el poder reductor generado en
el hialoplasma durante la glucolisis?
A través de sistemas de lanzadera, que llevan este poder reductor a la matriz mitocondrial en forma de
moléculas reducidas sin necesidad de que entre físicamente el NADH obtenido en la glucolisis.
117. Algunos compuestos como el 2,4, dinitrofenol tienen el efecto de desacoplar el transporte
electrónico de la fosforilación oxidativa. Para ello, se introducen entre los lípidos de la membrana
mitocondrial interna volviéndola permeable a los iones hidrógeno. ¿Podrías explicar este efecto
desacoplante?
Al volver permeable a los iones H+ la membrana mitocondrial interna, éstos pueden regresar libremente a la
matriz a favor de su gradiente electroquímico sin tener que hacerlo a través de la ATP sintetasa, con la
consiguiente detención de la fosforilación oxidativa.
118. Explica por qué los electrones procedentes del NADH producen más ATP al circular por la
cadena respiratoria que los procedentes del FADH2.
Porque el NADH cede sus electrones al comienzo de la cadena respiratoria y éstos recorren todos los
centros de bombeo de protones que crean el gradiente que luego se utiliza para fabricar ATP, mientras
que el FADH2 los cede a un componente de la cadena que está después del primer centro de bombeo
de protones, con lo que, al bombearse menos protones, se obtienen menor cantidad de ATP.
119. Calcula cuantas moléculas de ATP se obtienen mediante la degradación total de una molécula
de glucosa hasta CO2 y H2O.
Resultado: 36-38 moléculas de ATP (en función del sistema de lanzadera utilizado).
120. ¿Podría tener lugar la fosforilación oxidativa si los componentes de la cadena respiratoria se
encontrasen libres en disolución en lugar de estar anclados en la membrana mitocondrial interna?
No. El mecanismo del acoplamiento quimiosmótico de la fosforilación oxidativa se basa en el bombeo
de protones a través de una membrana que es impermeable a ellos. Si los transportadores se
encontrasen libres en disolución, el transporte electrónico no podría generar el gradiente de
concentración de protones que después se utiliza para fabricar ATP.
121. Explica la diferencia entre el anabolismo autótrofo y el anabolismo heterótrofo. ¿Qué tipos de
células pueden realizar uno y otro tipo de anabolismo?
Anabolismo autótrofo.- Se sintetizan moléculas orgánicas sencillas a partir de moléculas inorgánicas
(CO2, agua, etc.). Lo llevan a cabo sólo las células autótrofas.
Anabolismo heterótrofo.- Se sintetizan moléculas orgánicas progresivamente más complejas a partir
de moléculas orgánicas sencillas (piruvato, gliceradehido,…). Lo llevan a cabo todas las células.
122. ¿Qué tipos de sustancias inorgánicas se fijan en forma de materia orgánica en el proceso de
fotosíntesis?
CO2 y sales minerales (nitratos y sulfatos)
123. Localiza los pigmentos responsables de la fotosíntesis en una célula procariota y en una célula
eucariota.
Célula procariota.- En unas invaginaciones de la membrana plasmática denominadas cromatóforos.
Célula eucariota.- En la membrana tilacoidal de los cloroplastos.
124. Resume en pocas palabras los procesos de la fase luminosa y de la fase oscura de la
fotosíntesis.
 Fase luminosa.- Fijación de la energía radiante de la luz solar en forma de energía
química del ATP y NADPH.
 Fase oscura.- Utilización de la energía química el ATP y NADPH para fijar el CO2 y las
sales minerales en forma de compuestos orgánicos.
125. ¿En qué tipo de estructuras están organizados los pigmentos fotosintéticos? Describe
brevemente una de estas estructuras.
Están organizados en fotosistemas. Constan de: a) un complejo antena formado por varios centenares
de moléculas de clorofila y carotenoides y proteínas que canalizan la energía luminosa hacia b) el
centro de reacción, formado por la clorofila diana junto con un dador y un aceptor de electrones, que
varían según el tipo de fotosistema.
126. ¿A qué llamamos complejo antena? ¿Y centro de reacción? ¿Cómo se denomina el conjunto
formado por ambos?
Un complejo antena está formado por varios centenares de moléculas de clorofila y carotenoides y
proteínas que canalizan la energía luminosa hacia el centro de reacción , formado por la clorofila diana
junto con un dador y un aceptor de electrones, que varían según el tipo de fotosistema. El conjunto del
complejo antena y el centro de reacción se denomina fotosistema.
127. ¿En qué se diferencian fundamentalmente el transporte electrónico mitocondrial del
transporte electrónico fotosintético?
El transporte electrónico mitocondrial es un proceso exergónico, liberador de energía, que transcurre
a favor de gradiente de potencial redox. El transporte electrónico fotosintético es un proceso
endergónico, que requiere energía, y que transcurre en contra de gradiente de potencial redox
128. ¿En qué lugar de la célula tiene lugar la fase luminosa de la fotosíntesis? ¿Y la fase oscura?
Fase luminosa: en la membrana tilacoidal del cloroplasto.
Fase oscura: en el estroma del cloroplasto.
129. Describe brevemente el flujo de electrones característico del transporte electronico
fotosintético (puedes ayudarte de un esquema).
La luz excita un par de electrones del PSII que son rápidamente repuestos por lo procedentes de la fotólisis de
una molécula de agua. Los electrones excitados de PSII son cedidos al primer tramo de la cadena de
transporte electrónico fotosintético de la membrana tilacoidal, donde, a favor de gradiente de potencial
redox, son transportados hasta el PSI (con el consiguiente bombeo de protones que se utilizará para generar
ATP). Los electrones que llegan al PSI ocupan el lugar de los que acaban de ser excitados por la luz, y que son
cedidos al segundo tramo de la cadena de transporte electrónico que los conduce al NADP+, el cual se reduce
a NADPH.
130. ¿Con qué objeto llevan a cabo las células la fotofosforilación cíclica? ¿En qué se diferencia de la
fotofosforilación no cíclica?
Para obtener moléculas adicionales de ATP sin obtener al mismo tiempo NADPH, ya que en la fase
oscura se necesita más ATP que NADPH.
En la cíclica, al contrario que en la no cíclica, no interviene el agua, no se libera oxígeno, no interviene
el fotosistema II y no se obtiene NADPH.
131. ¿Por qué se considera poco afortunada la denominación “fase oscura” de la fotosíntesis?
Porque, aunque puede transcurrir en la oscuridad, depende de los productos de la fase luminosa (ATP y
NADPH). En ausencia de luz, las reacciones de la fase oscura sólo pueden continuar hasta que se agotan los
productos de la fase luminosa.
132. Enuncia los tres procesos principales que configuran el ciclo de Calvin.
 Fijación del CO2 a la ribulosa-bifosfato.
 Reducción del ácido fosfoglicérico a gliceraldehido-fosfato.
 Regeneración de la ribulosa bifosfato.
133. ¿Cuál es el destino de los fosfatos de triosa que se generan en el ciclo de Calvin?
En parte se desvían hacia la síntesis de glucosa mediante la ruta de la gluconeogénesis, y en parte se
utilizan para regenerar la ribulosa difosfato.
134. ¿A qué se debe el fenómeno de la fotorrespiración? ¿Por qué se denomina así?
Se debe a que el enzima RUBISCO puede utilizar el oxígeno como sustrato en lugar del CO2, con el
resultado de destrucción de materia orgánica. Se denomina así porque el intercambio de gases
asociado a este proceso es idéntico al que tiene lugar en la respiración celular e inverso al que
caracteriza a la fotosíntesis normal.
135. ¿Cómo solucionan algunas plantas el problema causado por la fotorrespiración? ¿Cómo se
denominan estas plantas?
Utilizando para la fijación del CO2 una ruta alternativa al ciclo de Calvin que es la ruta de Hatch y Slack,
en la que el CO2 se fija inicialmente sobre un compuesto de cuatro carbonos.
Se denomina plantas C4.
136. ¿En qué forma obtienen las plantas el nitrógeno y el azufre que necesitan para construir
determinadas biomoléculas?
En forma de sales minerales que se encuentran en el suelo (nitratos y sulfatos)
137. ¿Cómo emplean las células fotosintéticas los productos de la fase luminosa para la fijación del
nitrógeno y el azufre?
Los nitratos son inicialmente reducidos a nitritos y después a amoníaco, a expensas del poder reductor
del NADPH obtenido en la fase luminosa. A continuación, el amoníaco es incorporado al esqueleto carbonado
del ácido α-cetoglutárico para dar ácido glutámico en una reacción que consume ATP procedente también de
la fase luminosa.
De modo parecido, los sulfatos son reducidos a sulfitos y después a ácido sulfhídrico, que a
continuación se incorpora en el esqueleto de algunos aminoácidos como la cisteína.
138. Explica cómo varía la intensidad fotosintética en función de la concentración de dióxido de
carbono. ¿Por qué para niveles altos de CO2 la intensidad fotosintética se torna insensible a este
factor?
La intensidad fotosintética crece con la concentración de CO2, pero para valores altos de ésta la
intensidad fotosintética tiende a estabilizarse en un valor máximo.
La curva hiperbólica que describe la variación de la IF con la concentración de CO2 está reflejando el
efecto de saturación del enzima RUBISCO por su sustrato (CO2).
139. ¿Cómo afecta la mayor o menor concentración de O2 a la intensidad fotosintética? ¿A qué
puede ser debido este efecto?
La intensidad fotosintética disminuye con la concentración de oxígeno. Ello es debido al fenómeno de
la fotorrespiración.
140. ¿En qué se diferencian fundamentalmente la fotosíntesis de la quimiosíntesis?
En la fuente de energía para la obtención de ATP y NADPH, que es la luz en la fotosíntesis y reacciones redox
en las que se oxidan sustratos inorgánicos relativamente reducidos en la quimiosíntesis.
141. ¿En qué consiste la gluconeogénesis? ¿En qué lugar de la célula transcurre?
La gluconeogénisis es una ruta anabólica en la que se genera glucosa a partir de piruvato o lactato.
Tiene lugar en el citosol.
142. ¿De qué metabolito parte la síntesis reductora de ácidos grasos? ¿En qué lugar de la célula
transcurre?
Parte de Acetil-CoA. Transcurre en el citosol.

Más contenido relacionado

La actualidad más candente

1328926090.el nucleo en la celula eucariota
1328926090.el nucleo en la celula eucariota1328926090.el nucleo en la celula eucariota
1328926090.el nucleo en la celula eucariotakmi03
 
Estructura de la_celula_eucariota_vegetal (1)
Estructura de la_celula_eucariota_vegetal (1)Estructura de la_celula_eucariota_vegetal (1)
Estructura de la_celula_eucariota_vegetal (1)Alvaro Alvite
 
Tema 5 componentes de la célula eucariótica envolturas celulares
Tema 5 componentes de la célula eucariótica envolturas celularesTema 5 componentes de la célula eucariótica envolturas celulares
Tema 5 componentes de la célula eucariótica envolturas celularespacozamora1
 
Citologia Organulos Citoplasmaticos
Citologia Organulos CitoplasmaticosCitologia Organulos Citoplasmaticos
Citologia Organulos Citoplasmaticosa arg
 
Celula1
Celula1Celula1
Celula1kmi03
 
CELULA EXPOSICION
CELULA EXPOSICIONCELULA EXPOSICION
CELULA EXPOSICIONEd Paredes
 
Conferencia 2 citologia vegetal (cont) proceso de división celular
Conferencia 2  citologia vegetal (cont) proceso de división celularConferencia 2  citologia vegetal (cont) proceso de división celular
Conferencia 2 citologia vegetal (cont) proceso de división celularLuis Atamaenda
 
Celulaeucariota
CelulaeucariotaCelulaeucariota
Celulaeucariotakmi03
 
La celula eucariota estructura
La celula eucariota estructuraLa celula eucariota estructura
La celula eucariota estructuraN Flores
 
exposicion Celula procariota bacteriana
exposicion Celula procariota bacterianaexposicion Celula procariota bacteriana
exposicion Celula procariota bacterianaDenisse Murillo
 
Unidad 9. Membrana plasmática y otros orgánulos membranosos
Unidad 9. Membrana plasmática y otros orgánulos membranososUnidad 9. Membrana plasmática y otros orgánulos membranosos
Unidad 9. Membrana plasmática y otros orgánulos membranososFrancisco Aparicio
 
Tema 5 teoría celular y envolturas celulares
Tema 5 teoría celular y envolturas celularesTema 5 teoría celular y envolturas celulares
Tema 5 teoría celular y envolturas celularesRosa Berros Canuria
 
Estructura de la célula eucariota final
Estructura de la célula eucariota finalEstructura de la célula eucariota final
Estructura de la célula eucariota finalYisus Raza
 
La celula
La celulaLa celula
La celulakmi03
 

La actualidad más candente (20)

1328926090.el nucleo en la celula eucariota
1328926090.el nucleo en la celula eucariota1328926090.el nucleo en la celula eucariota
1328926090.el nucleo en la celula eucariota
 
Estructura de la_celula_eucariota_vegetal (1)
Estructura de la_celula_eucariota_vegetal (1)Estructura de la_celula_eucariota_vegetal (1)
Estructura de la_celula_eucariota_vegetal (1)
 
Tema 5 componentes de la célula eucariótica envolturas celulares
Tema 5 componentes de la célula eucariótica envolturas celularesTema 5 componentes de la célula eucariótica envolturas celulares
Tema 5 componentes de la célula eucariótica envolturas celulares
 
Citologia Organulos Citoplasmaticos
Citologia Organulos CitoplasmaticosCitologia Organulos Citoplasmaticos
Citologia Organulos Citoplasmaticos
 
Celula1
Celula1Celula1
Celula1
 
CELULA EXPOSICION
CELULA EXPOSICIONCELULA EXPOSICION
CELULA EXPOSICION
 
Conferencia 2 citologia vegetal (cont) proceso de división celular
Conferencia 2  citologia vegetal (cont) proceso de división celularConferencia 2  citologia vegetal (cont) proceso de división celular
Conferencia 2 citologia vegetal (cont) proceso de división celular
 
Envolturas celulares
Envolturas celularesEnvolturas celulares
Envolturas celulares
 
Celulaeucariota
CelulaeucariotaCelulaeucariota
Celulaeucariota
 
La celula eucariota estructura
La celula eucariota estructuraLa celula eucariota estructura
La celula eucariota estructura
 
exposicion Celula procariota bacteriana
exposicion Celula procariota bacterianaexposicion Celula procariota bacteriana
exposicion Celula procariota bacteriana
 
Unidad 9. Membrana plasmática y otros orgánulos membranosos
Unidad 9. Membrana plasmática y otros orgánulos membranososUnidad 9. Membrana plasmática y otros orgánulos membranosos
Unidad 9. Membrana plasmática y otros orgánulos membranosos
 
Tema 5 teoría celular y envolturas celulares
Tema 5 teoría celular y envolturas celularesTema 5 teoría celular y envolturas celulares
Tema 5 teoría celular y envolturas celulares
 
Estructura de la célula eucariota final
Estructura de la célula eucariota finalEstructura de la célula eucariota final
Estructura de la célula eucariota final
 
La celula
La celulaLa celula
La celula
 
taller de biologia
taller de biologia taller de biologia
taller de biologia
 
Célula
CélulaCélula
Célula
 
Mitosis celular
Mitosis celularMitosis celular
Mitosis celular
 
1 3 organización y estructura celular
1 3 organización y estructura celular1 3 organización y estructura celular
1 3 organización y estructura celular
 
La envoltura celular
La envoltura celularLa envoltura celular
La envoltura celular
 

Destacado (18)

Cuestionario guía metabolismo de aminoácidos
Cuestionario guía metabolismo de aminoácidosCuestionario guía metabolismo de aminoácidos
Cuestionario guía metabolismo de aminoácidos
 
La celula y sus generalidades
La celula y sus generalidadesLa celula y sus generalidades
La celula y sus generalidades
 
Presentacion biomoleculas
Presentacion biomoleculasPresentacion biomoleculas
Presentacion biomoleculas
 
El principito
El principitoEl principito
El principito
 
El principito. power point
El principito. power pointEl principito. power point
El principito. power point
 
PRINCIPITO
PRINCIPITOPRINCIPITO
PRINCIPITO
 
El principito
El principitoEl principito
El principito
 
El principito diapositivas
El principito  diapositivasEl principito  diapositivas
El principito diapositivas
 
Bioquimica Harvey (2) cuestionarios
Bioquimica Harvey (2) cuestionariosBioquimica Harvey (2) cuestionarios
Bioquimica Harvey (2) cuestionarios
 
Bioquimica cuestionario.
Bioquimica cuestionario.Bioquimica cuestionario.
Bioquimica cuestionario.
 
Metabolismo Selectividad Preguntas Respuestas
Metabolismo Selectividad Preguntas RespuestasMetabolismo Selectividad Preguntas Respuestas
Metabolismo Selectividad Preguntas Respuestas
 
Diapositivas de ph quimica
Diapositivas de ph quimicaDiapositivas de ph quimica
Diapositivas de ph quimica
 
Presentacion PH
Presentacion PHPresentacion PH
Presentacion PH
 
Género Narrativo NB4 (6° Básico)
Género Narrativo NB4 (6° Básico)Género Narrativo NB4 (6° Básico)
Género Narrativo NB4 (6° Básico)
 
La Celula
La CelulaLa Celula
La Celula
 
Trabajo escrito bajo las normas icontec. último
Trabajo escrito bajo las normas icontec. últimoTrabajo escrito bajo las normas icontec. último
Trabajo escrito bajo las normas icontec. último
 
0.8 los demostrativos en inglés pronombres y adjetivos
0.8   los demostrativos en inglés pronombres y adjetivos0.8   los demostrativos en inglés pronombres y adjetivos
0.8 los demostrativos en inglés pronombres y adjetivos
 
Tema 1 LOS SERES VIVOS. LA CÉLULA
Tema 1 LOS SERES VIVOS. LA CÉLULATema 1 LOS SERES VIVOS. LA CÉLULA
Tema 1 LOS SERES VIVOS. LA CÉLULA
 

Similar a Soluciones a las preguntas breves célula

Similar a Soluciones a las preguntas breves célula (20)

nucleo-celular-biologia-equipo-6 (2).pdf
nucleo-celular-biologia-equipo-6 (2).pdfnucleo-celular-biologia-equipo-6 (2).pdf
nucleo-celular-biologia-equipo-6 (2).pdf
 
Lectura 5 la_membrana_celular
Lectura 5 la_membrana_celularLectura 5 la_membrana_celular
Lectura 5 la_membrana_celular
 
Celula
CelulaCelula
Celula
 
Mosaico fluido
Mosaico fluidoMosaico fluido
Mosaico fluido
 
Ciencia y ambiente
Ciencia y ambiente Ciencia y ambiente
Ciencia y ambiente
 
Como estan organizadas las celulas
Como estan organizadas las celulasComo estan organizadas las celulas
Como estan organizadas las celulas
 
2. guia organelos celulares
2. guia organelos celulares2. guia organelos celulares
2. guia organelos celulares
 
Célula Eucarionte, Vegetal y Animal I: Pared, Membrana y Transporte (BC06 - P...
Célula Eucarionte, Vegetal y Animal I: Pared, Membrana y Transporte (BC06 - P...Célula Eucarionte, Vegetal y Animal I: Pared, Membrana y Transporte (BC06 - P...
Célula Eucarionte, Vegetal y Animal I: Pared, Membrana y Transporte (BC06 - P...
 
Célula
CélulaCélula
Célula
 
Célula
CélulaCélula
Célula
 
3cb Como Estan Organizadas Las Celulas
3cb Como Estan Organizadas Las Celulas3cb Como Estan Organizadas Las Celulas
3cb Como Estan Organizadas Las Celulas
 
Como Estan Organizadas Las Celulas
Como Estan Organizadas Las CelulasComo Estan Organizadas Las Celulas
Como Estan Organizadas Las Celulas
 
La Celula y Electrolitos
La Celula y Electrolitos La Celula y Electrolitos
La Celula y Electrolitos
 
Guía de citologia
Guía de citologiaGuía de citologia
Guía de citologia
 
La Celula
La CelulaLa Celula
La Celula
 
Celula musculo - virus - bacterias
Celula   musculo - virus - bacteriasCelula   musculo - virus - bacterias
Celula musculo - virus - bacterias
 
Celula musculo - virus - bacterias
Celula   musculo - virus - bacteriasCelula   musculo - virus - bacterias
Celula musculo - virus - bacterias
 
Universidad yacambu
Universidad yacambuUniversidad yacambu
Universidad yacambu
 
Célula vegetal
Célula vegetalCélula vegetal
Célula vegetal
 
Celula
CelulaCelula
Celula
 

Más de Miriam Valle

Salud y enfermedad
Salud y enfermedadSalud y enfermedad
Salud y enfermedadMiriam Valle
 
Pp enfermedades no infecciosas
Pp enfermedades no infecciosasPp enfermedades no infecciosas
Pp enfermedades no infecciosasMiriam Valle
 
Pp enfermedades infecciosas2
Pp enfermedades infecciosas2Pp enfermedades infecciosas2
Pp enfermedades infecciosas2Miriam Valle
 
Pp enfermedades infecciosas
Pp enfermedades  infecciosasPp enfermedades  infecciosas
Pp enfermedades infecciosasMiriam Valle
 
El ser humano_y_la_salud
El ser humano_y_la_saludEl ser humano_y_la_salud
El ser humano_y_la_saludMiriam Valle
 
Practica 2 azucares corta
Practica 2 azucares cortaPractica 2 azucares corta
Practica 2 azucares cortaMiriam Valle
 
Autoevaluacion final
Autoevaluacion finalAutoevaluacion final
Autoevaluacion finalMiriam Valle
 
Alimentacin y nutrición
Alimentacin y nutriciónAlimentacin y nutrición
Alimentacin y nutriciónMiriam Valle
 
Actividad etiquetas
Actividad etiquetasActividad etiquetas
Actividad etiquetasMiriam Valle
 
Practicas células y tejidos
Practicas células y tejidosPracticas células y tejidos
Practicas células y tejidosMiriam Valle
 
Autoevaluacion final
Autoevaluacion finalAutoevaluacion final
Autoevaluacion finalMiriam Valle
 

Más de Miriam Valle (20)

El anabolismo
El anabolismoEl anabolismo
El anabolismo
 
Cálculos
CálculosCálculos
Cálculos
 
Exámen 2
Exámen 2Exámen 2
Exámen 2
 
Salud enfermedad
Salud enfermedadSalud enfermedad
Salud enfermedad
 
Salud y enfermedad
Salud y enfermedadSalud y enfermedad
Salud y enfermedad
 
Pp salud 20
Pp salud 20Pp salud 20
Pp salud 20
 
Pp enfermedades no infecciosas
Pp enfermedades no infecciosasPp enfermedades no infecciosas
Pp enfermedades no infecciosas
 
Pp enfermedades infecciosas2
Pp enfermedades infecciosas2Pp enfermedades infecciosas2
Pp enfermedades infecciosas2
 
Pp enfermedades infecciosas
Pp enfermedades  infecciosasPp enfermedades  infecciosas
Pp enfermedades infecciosas
 
Microorganismo
MicroorganismoMicroorganismo
Microorganismo
 
El ser humano_y_la_salud
El ser humano_y_la_saludEl ser humano_y_la_salud
El ser humano_y_la_salud
 
Practica 2 azucares corta
Practica 2 azucares cortaPractica 2 azucares corta
Practica 2 azucares corta
 
Nutrición (2)
Nutrición (2)Nutrición (2)
Nutrición (2)
 
Autoevaluacion final
Autoevaluacion finalAutoevaluacion final
Autoevaluacion final
 
Alimentacin y nutrición
Alimentacin y nutriciónAlimentacin y nutrición
Alimentacin y nutrición
 
Actividad etiquetas
Actividad etiquetasActividad etiquetas
Actividad etiquetas
 
Célula 3
Célula 3Célula 3
Célula 3
 
Suicidio celular
Suicidio celularSuicidio celular
Suicidio celular
 
Practicas células y tejidos
Practicas células y tejidosPracticas células y tejidos
Practicas células y tejidos
 
Autoevaluacion final
Autoevaluacion finalAutoevaluacion final
Autoevaluacion final
 

Último

Proyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasProyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasELIANAMARIBELBURBANO
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoasadvavillacorte123
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...crcamora123
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNjmorales40
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxmatepura
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitalesnievesjiesc03
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfPresentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfjuancmendez1405
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónJonathanCovena1
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxvanessaavasquez212
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...harolbustamante1
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALLA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALJorge Castillo
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxPabloPazmio14
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxNoe Castillo
 
Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...odalisvelezg
 
PROYECTO INTEGRADOR ARCHIDUQUE. presentacion
PROYECTO INTEGRADOR ARCHIDUQUE. presentacionPROYECTO INTEGRADOR ARCHIDUQUE. presentacion
PROYECTO INTEGRADOR ARCHIDUQUE. presentacionyorbravot123
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfYolandaRodriguezChin
 

Último (20)

Proyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasProyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistas
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoas
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfPresentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptx
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALLA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOSTRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
 
Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...
 
PROYECTO INTEGRADOR ARCHIDUQUE. presentacion
PROYECTO INTEGRADOR ARCHIDUQUE. presentacionPROYECTO INTEGRADOR ARCHIDUQUE. presentacion
PROYECTO INTEGRADOR ARCHIDUQUE. presentacion
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 

Soluciones a las preguntas breves célula

  • 1. Soluciones a las Preguntas breves 1. ¿Por qué decimos que los niveles de organización atómico y molecular son niveles abióticos mientras que consideramos al nivel celular como un nivel biótico? Porque las estructuras propias de los niveles atómico y molecular (átomos y moléculas) no están dotadas de los atributos de la vida, mientras que las propias del nivel celular (las células) sí lo están. 2. Robert Hooke denominó cellulla a cada una de las celdillas que aparecían en el campo de su microscopio cuando observaba láminas finas de corcho. ¿Eran en realidad células lo que observaba? ¿Qué era realmente lo que estaba observando? En realidad, el corcho o súber es un tejido muerto. Lo que observaba Hooke eran espacios vacíos (que anteriormente habían estado ocupados por células vivas) rodeados de paredes celulares impregnadas en suberina. 3. Los científicos del S XIX descartaron definitivamente la hipótesis de la "generación espontánea" afirmando que toda célula procede por división de otra célula preexistente. Si hubieran podido viajar en el tiempo y observar el océano de la Tierra hace unos 3000 millones de años es muy probable que no fueran tan categóricos en su afirmación. ¿Cómo explicarías esta aparente contradicción? Si aceptamos la teoría de Oparin acerca del origen de la vida sobre la Tierra, parcialmente corroborada por los experimentos de Miller y Urey, en el océano primitivo de la Tierra, en unas condiciones ambientales muy diferentes de las actuales, las primeras células vivas surgieron a partir de materia inanimada (las moléculas orgánicas de la “sopa primigenia”). Este proceso podría concebirse como una suerte de “generación espontánea”, aunque muy diferente de la que defendían muchos naturalistas anteriores a Pasteur. 4. El tamaño de las células vivas oscilaentre los 0,3 μm para las más pequeñas y los 100 μm para las más grandes. ¿Por qué no existen células sensiblemente más pequeñas o más grandes? El límite inferior de tamaño vendría dado por el volumen mínimo necesario para albergar la maquinaria bioquímica imprescindible para mantener el estado vital. El límite superior se explicaría atendiendo a que a medida que aumenta el tamaño de las células disminuye su relación superficie/volumen y, con ella, la eficacia del intercambio de sustancias con su entorno, que resulta esencial para la nutrición celular. 5. Completa la siguiente tabla indicando con un "Si" o un "No" la presencia o ausencia en los distintos tipos celulares de los siguientes orgánulos, estructuras, componentes y procesos.
  • 2. CÉLULA PROCARIOTA CÉLULA ANIMAL CÉLULA VEGETAL Membrana Sí Sí Sí Pared celular Sí No Sí Envoltura nuclear No Sí Sí Ribosomas Sí Sí Sí Mitocondrias No Sí Sí Cloroplastos No No Sí Citoesqueleto No Sí Sí Centrosoma No Sí No Microtúbulos No Sí Sí Nucléolos No Sí Sí Cromatina No Sí Sí Flagelos Sí Sí Sí Mitosis No Sí Sí Endocitosis No Sí No
  • 3. 6. 7. ¿Por qué razón muchos tipos de células alteran la composición en ácidos grasos de los lípidos que forman parte de sus membranas respondiendo a las variaciones de la temperatura ambiental? ¿Por qué se hace necesaria la presencia de esteroles entre los lípidos de membrana? El estado fluido de sus componentes es esencial para que las membranas puedan realizar buena parte de sus funciones. El punto de fusión de las membranas varía en función de la composición en ácidos grasos de sus lípidos constituyentes: cuanto mayor sea la proporción de ácidos grasos insaturados menor será el punto de fusión. Así, alterando la composición en ácidos grasos de sus lípidos constituyentes, las membranas pueden responder a variaciones de la temperatura ambiental con el objeto de mantener en todo momento el estado fluido. Los esteroles intercalados entre otros lípidos de membrana impiden que estos se agreguen estableciendo entre sí interacciones de Van der Waals y ayudan así a mantener el estado fluido aun a temperaturas bajas. 8. ¿Por qué decimos que la membrana plasmática es un mosaico fluido? Se dice que es un mosaico porque la distribución de sus componentes moleculares recuerda a ese tipo de composición artística característico de la antigua Roma. Y se dice que es fluido porque los distintos componentes moleculares no ocupan posiciones fijas dentro de la estructura, sino que tienen libertad de movimiento dentro de ella. Esta libertad de movimiento es característica del estado fluido. 9. Explica las diferencias entre las proteínas integrales y las proteínas periféricas de la membrana plasmática. ¿Por qué las proteínas integrales tienden en general a precipitar cuando se las extrae de la membrana? Las proteínas integrales se encuentran íntimamente asociadas a la bicapa lipídica por lo que resultan difíciles de extraer de la misma. Una parte sustancial de su molécula se encuentra sumergida en la bicapa lipídica estableciéndose interacciones hidrofóbicas entre los grupos R de los restos de aminoácidos no polares y las colas hidrocarbonadas de los lípidos. Las proteínas periféricas tienen un grado de asociación con la bicapa mucho más débil: no están sumergidas en ella. Se encuentran unidas a las cabezas polares de los lípidos o bien a proteínas integrales mediante interacciones débiles, aunque algunas pueden aparecer ancladas covalentemente a lípidos de la bicapa o a proteínas integrales. Las proteínas integrales tienden a agregarse unas con otras y a precipitar cuando se las extrae de la bicapa porque al hacerlo queda expuesto al agua su dominio no polar, que en condiciones naturales está en contacto con las colas hidrocarbonadas de los lípidos. 10. ¿Cómo se genera la pared celular vegetal? ¿Cómo se disponen sus diferentes capas en función de su mayor o menor proximidad a la membrana plasmática? Los materiales que forman la pared celular resultan de la actividad secretora del aparato de Golgi. Estos materiales se disponen en capas sucesivas que se van depositando desde fuera hacia dentro, de manera que las más recientes son las que quedan en contacto con la membrana plasmática. La
  • 4. primera capa en depositarse es la llamada lámina media, después se van depositando sucesivamente las tres capas de la pared primaria y luego las sucesivas capas de la pared secundaria. 11. Después de una precipitación intensa el suelo queda totalmente encharcado y las células de las raíces de las plantas que habitan en él se ven rodeadas de un medio fuertemente hipotónico con respecto a su interior. ¿Cómo consiguen estas células resistir la elevada presión osmótica a la que se ven sometidas? Gracias a la gran resistencia mecánica de su pared celular, capaz de resistir sin romperse presiones osmóticas muy elevadas. Además de proteger así a sus las células de la raíz, el flujo osmótico así controlado se utiliza para bombear la savia bruta hacia las partes más elevadas de la planta. 12. Las células musculares estriadas presentan unas estructuras repetitivas denominadas sarcómeros que son las responsables del fenómeno de la contracción muscular. ¿Cuál es la composición química de estas estructuras? ¿En qué parte de la célula las encuadrarías? Los sarcórmeros están constituidos por filamentos proteicos de las proteínas actina y miosina fundamentalmente. Estos filamentos forman parte del citoesqueleto. 13. En ocasiones, los microtúbulos dispersos del citoesqueleto se organizan para dar lugar a estructuras más concretas que pueden ser más o menos permanentes en la célula.¿Cuáles son esas estructuras? · Los centriolos (en el centrosoma) · Los corpúsculos basales de cilios y flagelos · El huso mitótico 14. ¿A qué llamamos diplosoma? ¿Cuál es su composición y estructura? El diplosoma es la pareja de centriolos que ocupan la zona central del centrosoma. Cada centriolo consiste en un cilindro hueco cuya pared está compuesta por nueve tripletes de microtúbulos. 15. ¿Qué analogías y diferencias existen entre un centriolo, un corpúsculo basal de un cilio o flagelo, y el axonema del mismo? Un centriolo y un corpúsculo basal de un cilio o flagelo tienen exactamente la misma estructura: nueve tripletes de microtúbulos (9x3). El axonema de un cilio o flagelo presenta una estructura similar, formada por nueve pares de microtúbulos periféricos y un par de microtúbulos centrales: (9x2)+2
  • 5. 16. Define mediante una frase corta los siguientes términos: ribosoma, lisosoma, nucleosoma, cromosoma, dictiosoma, peroxisoma, diplosoma, mesosoma.  Ribosoma.- Orgánulo formado por rRNA proteínas responsable de la síntesis de las proteínas celulares  Lisosoma.- Orgánulo membranoso que alberga enzimas hidrolíticos responsables de la digestión celular.  Nucleosoma.- Unidad básica de la fibra de cromatina, formada por 20 pares de bases de DNA y un octámero de proteínas histónicas.  Cromosoma.- Estructura con forma de bastoncillo que resulta de la condensación de la cromatina. Está formado, como ella, por DNA y proteínas histónicas.  Dictiosoma.- Cada una de las pilas de sáculas aplanadas que forman el aparato de Golgi.  Peroxisoma.- Orgánulo membranoso que alberga en su interior enzimas oxidativos.  Diplosoma.- Par de centriolos que ocupa la parte central del centrosoma.  Mesosoma.- Invaginación de la membrana plasmática de la célula procariota, que contiene las cadenas de transporte electrónico responsables de la respiración celular. 16. ¿En qué lugares de la célula eucariota podemos encontrar a los ribosomas? · Libres en el citosol · Adheridos a las membranas del retículo endoplasmático rugoso · En el interior de mitocondrias y cloroplastos 17. Describe el camino que ha de seguir y las modificaciones que ha de experimentar una glucoproteína desde el momento en que es sintetizada hasta que queda definitivamente emplazada en la bicapa lipídica de la membrana plasmática. La proteína se sintetiza en un ribosoma de retículo endoplasmático rugoso y queda incrustada en la membrana de este orgánulo, donde sufrirá algunas modificaciones incluyendo la adición de cadenas oligosacarídicas. De allí sale formando parte de la membrana de una vesícula de transición que se dirige a la cara cis del aparato de Golgi para fundirse con la primera sácula de este orgánulo. A continuación irá pasando por las distintas sáculas donde sufrirán nuevas modificaciones por los enzimas allí presentes (incluyendo la adición o eliminación de algunos componentes de sus cadenas oligosacarídicas). Ya en la cara trans del aparato de Golgi se incorporará a la membrana de una vesícula secretora, que se dirigirá a la membrana plasmática incorporándose a ella por exocitosis. La proteína en cuestión quedará así incorporada a la membrana plasmática. 18. ¿Por qué decimos que el aparato de Golgi está estructural y bioquímicamente polarizado? Porque presenta dos caras: una cara cis a la que llega el tráfico de macromoléculas procedente del retículo endoplasmático, y una cara trans de la que sale el tráfico de macromoléculas para dirigirse a los distintos destinos celulares. 19. ¿Con qué objeto la membrana de los lisosomas presenta una proteína que bombea iones hidrógeno desde el hialoplasma hacia el interior del lisosoma?
  • 6. Esta proteína, al bombear protones hacia el interior del lisosoma, hace que allí se produzca un descenso del pH, que se aproxima así al pH óptimo de los enzimas hidrolíticos contenidos en el lisosoma. 20. Expón dos razones por las que los enzimas hidrolíticos albergados en el interior de los lisosomas no degradan las biomoléculas localizadas en el citosol. · La membrana del lisosoma lo impide manteniendo a los enzimas confinados en su interior. · Aun en caso de rotura de la membrana del lisosoma, el pH del citosol (próximo a 7) no es el idóneo para la acción de los enzimas hidrolíticos allí albergados. 21. Explica la diferencia esencial entre vacuolas e inclusiones. Las vacuolas son enclaves rodeados de membrana que albergan sustancias hidrosolubles. Las inclusiones carecen de membrana y almacenan sustancias insolubles en agua. 22. Una célula dispone en un momento dado de las siguientes sustancias para almacenar: glucosa, glucógeno, triacilglicéridos, aminoácidos. Razona en qué tipo de enclave citoplasmático se debería almacenar cada una de ellas. · En vacuolas.- glucosa y aminoácidos (hidrosolubles) · En inclusiones.- Glucógeno y triacilglicéridos (insolubles en agua). 23. ¿Qué rasgos distintivos presenta la membrana mitocondrial interna comparada con otras membranas celulares? · Es más rica en proteínas (80% aprox) · Carece de esteroides. 24. Señala algunas de las analogías entre las mitocondrias y las bacterias actuales que apoyen la teoría del origen endosimbionte de estos orgánulos. · Presencia de DNA en forma de una sola molécula circular · Presencia de ribosomas con estructura similar y a su vez diferentes de los del citosol eucariota · Tamaños similares.
  • 7. · Enzimas respiratorios y ATP sintetasa en la membrana. 25. Haz un esquema de una mitocondria y señala en él las dos membranas y los diferentes compartimientos que delimitan. 26. ¿Por qué las patatas "verdean" superficialmente cuando se las expone durante mucho tiempo a la luz? Porque los amiloplastos de las células parenquimatosas de la patata, que albergan el almidón de reserva, al quedar expuestos a la luz comienzan a sintetizar clorofila para transformarse en cloroplastos. 27. Haz un esquema de un cloroplasto y señala en él las tres membranas y los diferentes compartimientos que delimitan.
  • 8. 28. ¿Qué rasgos distintivos presenta la membrana tilacoidal comparada con otras membranas celulares? El más significativo es la presencia de pigmentos fotosintéticos: clorofilas y carotenoides. Estos pigmentos están ausentes en otras membranas celulares, incluyendo a las otras membranas del cloroplasto. 29. ¿A qué llamamos espacio perinuclear? ¿Con qué otro compartimiento subcelular se comunica? Es el espacio delimitado por las dos membranas que forman la envoltura nuclear. Se comunica con la luz del retículo endoplasmático. 30. ¿Qué similitudes y diferencias existen entre la cromatina y los cromosomas? La composición de ambas estructuras es idéntica: DNA e histonas a partes aproximadamente iguales. La diferencia entra ambas está en el grado de empaquetamiento, que es mínimo en la cromatina mientras que adquiere su mayor grado en el cromosoma metafásico. 31. ¿A qué llamamos cariotipo de una especie? Al conjunto de cromosomas característico de esa especie. 32. Cuando se observan las fibras de cromatina al microscopio electrónico aparecen unas estructuras repetitivas a las que se ha dado en llamar "el collar de perlas". ¿En qué consiste esta estructura?
  • 9. El “collar de perlas” es una sucesión de nucleosomas (unos 10 nm de grosor). El nucleosoma es la unidad básica de la cromatina. Está formado por un octámero de histonas con una doble cadena de DNA de unos 200 nucleótidos de longitud arrolada alrededor de él. 33. ¿Qué ventaja representa para las células eucariotas empaquetar sus moléculas de DNA junto con proteínas histónicas? Las proteínas histónicas son ricas en aminoácidos con carga positiva en su cadena lateral R. Estas cargas positivas neutralizan a las cargas negativas presentes en los grupos fosfato del DNA, eliminando así la repulsión electrostática entre ellas. Ello favorece un mayor empaquetamiento del DNA. 34. Tanto las células eucariotas como las procariotas disponen de una serie de proteínas transportadoras de electrones que intervienen en el proceso de respiración celular, así como un enzima encargado de sintetizar el ATP. ¿En dónde se localizan estas proteínas en uno y otro tipo de célula? · Eucariotas.- En la membrana mitocondrial interna. · Procariotas.- En la membrana plasmática. 35. ¿Qué diferencias existen entre la pared celular de la célula vegetal y la de la célula procariota? · Pared celular vegetal.- Compuesta por celulosa y cemento de unión rico en heteropolisacáridos. · Pared celular procariota.- Compuesta por peptidoglicano. 36. ¿Qué diferencias existen entre los cromosomas de las células eucariotas y los de las células procariotas? · Cromosomas eucariotas.- Múltiples moléculas lineales de DNA. · Cromosomas procariotas.- Una sóla moléculas de DNA circular. 37. ¿Por qué decimos que la membrana plasmática presenta permeabilidad selectiva? Porque permite el paso a través de ella de determinadas sustancias mientras que impide o limita el de otras. 38. ¿Puede una sustancia atravesar la membrana plasmática en contra de gradiente de concentración por transporte pasivo? ¿En qué casos? ¿Qué tipo de gradiente determinaría la dirección del transporte en tales casos?
  • 10. Sí, es posible. Cuando se trata de sustancias iónicas, que pueden pasar en contra de su gradiente de concentración si lo hacen a favor de un gradiente de potencial eléctrico. En estos casos la determinación de la dirección del transporte viene dada por una combinación de los gradientes eléctrico y de concentración: el gradiente electroquímico. 39. Teniendo en cuenta que la vitamina A es una sustancia liposoluble ¿por qué modalidad de transporte crees que podrá atravesar la membrana plasmática? Por difusión simple a través de la bicapa lipídica. 40. ¿A qué llamamos gradiente electroquímico a través de una membrana? A una combinación de los gradientes eléctrico y de concentración de esa sustancia. 41. Teniendo en cuenta que el interior de la célula está cargado negativamente con respecto al exterior (hay más cargas negativas dentro que fuera) ¿crees que el aminoácido arginina (ver Tabla 8.1) podría entrar en la célula por difusión facilitada? La arginina es un aminoácido con carga neta positiva. Podría entrar por difusión facilitada, incluso aunque el gradiente de concentración sea desfavorable, ya que lo haría a favor de gradiente eléctrico. 42. Muchas células son capaces de incorporar glucosa al citosol en contra de gradiente de concentración a través de una proteína de la membrana que no consume ATP, sino que utiliza la energía almacenada en un gradiente electroquímico previamente establecido por la bomba de Na+-K+. ¿Cómo se denomina esta modalidad de transporte? Transporte activo secundario (o cotransporte). 43. ¿De dónde procede la energía que utiliza la bomba de Na+-K+ para bombear estos iones a través de la membrana en contra de sus respectivos gradientes? De la hidrólisis del ATP por acción enzimática de la propia bomba. 44. Los distintos compartimientos subcelulares tienen en general una composición química diferente de la del citosol circundante. ¿Cómo explicarías este fenómeno? Sus membranas, al igual que la membrana plasmática, también ejercen una permeabilidad selectiva.
  • 11. 45. Señala los mecanismos por los que crees que podrán entrar en la célula las siguientes sustancias: agua, glucosa, oxígeno, CO2, aminoácidos, proteínas polisacáridos. · Difusión simple.- agua, oxígeno, CO2 · Difusión facilitada o transporte activo.- glucosa, aminoácidos. · Endocitosis.- proteínas, polisacáridos. 46. ¿Cuál es el papel de la clatrina en los procesos de endocitosis? Provocar la deformación de la membrana plasmática que propicia la formación de la vesícula endocítica. 47. ¿En qué se diferencian pinocitosis y fagocitosis? En el tamaño de las partículas incorporadas y en el tamaño de las vesículas endocíticas en que se incorporan. 48. ¿En qué consiste la pinocitosis mediada por receptores específicos? ¿Qué ventaja representa para las células frente a la pinocitosis convencional? Receptores específicos de la membrana interactúan con la molécula que se va a incorporar fijándola en una zona de la membrana previamente a la pinocitosis Permite incorporar eficazmente sustancias que se encuentran a baja concentración en el medio extracelular. 49. Una célula acaba de incorporar dentro de una vesícula endocítica un agregado supramolecular formado por proteínas y polisacáridos. Indica qué acontecimientos tendrán lugar desde este momento hasta que los nutrientes incorporados pasen a formar parte de la maquinaria bioquímica de la célula. Un lisosoma procedente del aparato de Golgi se funde con la vesícula endocítica permitiendo que los enzimas hidrolíticos que contienen actúen sobre el contenido de ésta. Los enzimas hidrolíticos romperán los enlaces glucosídicos de los polisacáridos y los enlaces peptídicos de las proteínas dando lugar a una mezcla de monosacáridos y aminoácidos. Éstos últimos podrán ahora atravesar la membrana de la vesícula pos distintas modalidades de transporte y, ya en el citosol, incorporarse a la maquinaria celular. 50. Indica cuál será el resultado de la digestión celular de cada uno de los siguientes tipos de biomoléculas: proteínas, polisacáridos, triacilglicéridos, oligosacáridos, fosfoglicéridos, nucleótidos, ácidos nucleicos. · Proteínas: aminoácidos
  • 12. · Polisacáridos: monosacáridos · Triacilglicéridos: glicerina y ácidos grasos. · Oligosacáridos: monosacáridos · Fosfoglicéridos.- glicerina, ácidos grasos, ácido fosfórico y compuestos polares. · Nucleótidos.- Pentosas, bases nitrogenadas, ácido fosfórico. · Ácidos nucleicos: nucleótidos y sus componentes. 51. ¿Por qué algunas sustancias deben ser sometidas a un proceso de digestión celular antes de ser incorporadas a la maquinaria bioquímica de la célula? ¿A qué tipos de sustancias nos referimos? Porque o bien no pueden incorporarse a la célula a través de sus membranas o bien porque aunque pudiesen, no serían útiles por ser ajenas a la célula. Se trata de las macromoléculas (proteínas, polisacáridos, etc.) que forman parte del alimento celular. 52. ¿Qué ventajas representa para los organismos unicelulares la digestión intracelularfrente a la digestión extracelular? El concentrar previamente el alimento en una vesícula endocítica aumenta la eficacia de los enzimas hidrolíticos, cuya acción se dispersaría rápidamente en el medio extracelular. 53. ¿Qué tipo de reacciones químicas intervienen en el proceso de digestión celular? ¿Qué tipo de enzimas catalizan estas reacciones? Reacciones de hidrólisis catalizadas por las hidrolasas ácidas de los lisosomas. 54. ¿Qué diferencia hay entre la digestión intracelular autofágica y la heterofágica? La procedencia del alimento: intracelular en la autofágica, y extracelular en la heterofágica. 55. ¿Todas las células de un organismo pluricelular tienen la misma información genética? Razona la respuesta. Sí, porque todas proceden, por sucesivas mitosis, de una sola célula (el zigoto). 56. En el supuesto de que se pudiesen distinguir los cromosomas como entidades individualizadas a lo largo de todo el ciclo celular, indica en cuales de las siguientes fases se encontrarían divididos
  • 13. longitudinalmente en dos cromátidas hermanas y en cuales no: telofase, período G1, período G2, profase, período S, anafase, metafase. Señala cuáles de ellas pertenecen a la interfase y cuáles a la mitosis. Divididos en cromátidas.- G2, profase, metafase No divididos en cromátidas.- anafase, telofase, G1 En el período S no están divididos al comienzo y sí al final. Mitosis.- Profase, metafase, anafase y telofase Interfase.- G1, S y G2 57. ¿Por qué consideramos poco adecuado denominar a la interfase período de reposo? Porque, aunque las manifestaciones citológicas son poco evidentes, es un período en el que la célula despliega una intensa actividad bioquímica, en la que destaca la replicación de su material genético. 58. ¿A qué llamamos placa metafásica? A la hilera de cromosomas alineados que se disponen en este período en el plano ecuatorial de la célula. 59. ¿Cuál es la diferencia entre los microtúbulos cinetocóricos y los microtúbulos polaresdel huso mitótico? Los microtúbulos cinetocóricos se encuentran unidos a cromosomas mientras que los polares no lo están. 60. ¿Por qué en la citocinesis de células vegetales no es posible la formación de un surco de segmentación semejante al que aparece en el caso de las células animales? Porque la rígida pared celular vegetal impide cualquier deformación de la célula. 61. ¿Qué orgánulo interviene en la citocinesis de las células vegetales que no lo hace en la de las células animales? El aparato de Golgi, a partir de cuyas vesículas secretoras se forma el fragmoplasto que terminará por consumar la citocinesis.
  • 14. 62. De las siguientes fases de la división celular meiótica distingue en cuales los cromosomas aparecerán divididos longitudinalmente en dos cromátidas hermanas y en cuales no: profase I, metafase I, anafase I, telofase I, profase II, metafase II, anafase II, telofase II. · Divididos en cromátidas.- Profase I, metafase I, anafase I, telofase I, profase II, metafase II. · No divididos en cromátidas.- Anafase II y Telofase II. 63. ¿Cuál es la diferencia esencial entre la anafase de la mitosis y la anafase de la primera división meiótica? En la anafase mitótica los cromosomas ya no están divididos en cromátidas hermanas, mientras que en la anafase I sí lo están. 64. ¿Por qué es necesaria una segunda división meiótica? Para separar las cromátidas hermanas, que tras la primera división meiótica permanecen unidas por sus centrómeros. 65. ¿Cuál es el significado biológico de la meiosis? ¿Con qué tipo de reproducción se encuentra asociada? La reducción a la mitad del número de cromosomas en la meiosis es necesaria para compensar la duplicación del número de cromosomas que trae consigo la fecundación. Se encuentra asociada a la reproducción sexual. 66. ¿En qué consiste el entrecruzamiento que tiene lugar durante la profase de la primera división meiótica? ¿Cuál es el significado biológico de este proceso? El entrecruzamiento es el intercambio de fragmentos entre cromosomas homólogos. Aumenta considerablemente el número de combinaciones de genes de origen paterno y materno que genera la meiosis. 67. ¿Cuál es la diferencia entre la reproducción asexual y la reproducción sexual? Reproducción asexual.- Interviene un solo individuo que da lugar a copia exactas de sí mismo. Reproducción sexual.- Intervienen dos individuos dando lugar a una progenie con distintas combinaciones genéticas de ambos.
  • 15. 68. ¿A qué llamamos cromosomas homólogos? ¿Cuál es la diferencia entre una dotación cromosómica haploide y una diploide? Llamamos cromosomas homólogos a aquellos que llevan información para los mismos caracteres. Una dotación haploide consta de n cromosomas, todos ellos con información para diferentes caracteres. Una dotación diploide consta de n pares de cromosomas homólogos. 69. ¿Cuántas células resultan de una división meiótica completa? ¿Qué tipo de dotación cromosómica tendrán dichas células? Cuatro células haploides. 70. Algunos organismos unicelulares tienden a acercarse a cualquier fuente luminosa. ¿Cómo llamarías a este tipo de movimiento celular? Distingue en este comportamiento cual es el estímulo y cual es la respuesta. Se trataría de un fototropismo positivo. El estímulo es la luz y la respuesta el movimiento. 71. Las células del hígado alteran su metabolismo ante la presencia de distintas hormonas en el medio extracelular. ¿Cuál sería en este caso el estímulo y cuál la respuesta? El estímulo sería la unión de la hormona a su receptor celular y la respuesta sería la alteración metabólica. 72. ¿A qué llamamos conjugación bacteriana? ¿Por qué decimos que es una forma primitiva de sexualidad? A la transferencia de fragmentos de material genético de unas células bacterianas a otras. Porque genera células mixtas, que reúnen información genética procedente de dos células distintas. 73. ¿Por qué decimos que las células vivas son máquinas químicas? Porque obtienen la energía de su entorno en forma de energía química, bien de los propios nutrientes (células organótrofas) o bien de las biomoléculas que sintetizan a expensas de la energía luminosa (células fotótrofas), y la manipulan en forma de tal energía química para edificar y mantener sus propias y complejas estructuras. 74. Los enzimas consiguen que las reacciones químicas desfavorables termodinámicamente (ΔGº>0) se tornen favorables. ¿Qué opinas de esta afirmación? Es falsa. Los enzimas reducen la barrera de energía de activación, con lo que aceleran la velocidad de reacción, pero no afectan a la variación total de energía libre (ΔGº), que permanece inalterada.
  • 16. 75. Los enzimas no alteran los equilibrios termodinámicos de las reacciones químicas, pero consiguen que dichos equilibrios se alcancen más rápidamente de lo que sucedería en ausencia de enzima. ¿Qué opinas de esta afirmación? Es correcta. Al conseguir reducir la barrera de energía de activación, aumentan la velocidad a la que transcurren las reacciones químicas que catalizan 76. ¿A qué llamamos energía libre de activación de una reacción química? A la diferencia entre la energía libre de los reactivos y la energía libre del estado de transición. 77. ¿Qué importancia tuvo para la Bioquímica el descubrimiento, debido a E. Büchner, de que los enzimas pueden actuar independientemente de la estructura celular? Permitió estudiar "in vitro" la estructura y función de los enzimas. 78. ¿Se puede afirmar en la actualidad que todos los enzimas son proteínas? Razona la respuesta. Casi todos lo son. Pero existe un reducido grupo de moléculas de RNA con capacidad enzimática. Se denominan ribozimas. 79. ¿Qué tipos de aminoácidos podemos encontrar en el centro activo de un enzima y cuáles son sus funciones?  Aminoácidos catalíticos.- Sus cadenas laterales R poseen propiedades que les permiten actuar como catalizadores .  Aminoácidos de unión.- Sus cadenas laterales R poseen grupos funcionales capaces de establecer interacciones débiles con grupos funcionales complementarios de la molécula de sustrato, contribuyendo a fijar a ésta al centro activo. 80. ¿En qué consiste el efecto de saturación del enzima por el sustrato? Cuando se mide la velocidad inicial de una reacción catalizada enzimáticamente se observa que para concentraciones de sustrato bajas la velocidad de reacción es proporcional a dicha concentración, como ocurre con carácter general para las reacciones no enzimáticas. A medida que la concentración de sustrato aumenta la velocidad de reacción deja de ser proporcional a ésta. Con un aumento posterior la velocidad de reacción llega a ser totalmente independiente de la concentración del sustrato y se aproxima asimptóticamente a un valor máximo que es característico de cada enzima y que se conoce como velocidad máxima. Se dice entonces que el enzima se halla saturado por el sustrato. 81. ¿A qué llamamos constante de Michaelis-Menten de un enzima? ¿Cuál es el significado biológico de dicha constante? La Km es la concentración de sustrato para la cual el enzima alcanza la mitad de su velocidad máxima característica. Constituye una medida de la afinidad del enzima por el sustrato. Valores altos de KM denotan baja afinidad, mientras que valores bajos denotan alta afinidad.
  • 17. 82. ¿Por qué decimos que la hipótesis del complejo enzima-sustrato explica satisfactoriamente el efecto de saturación del enzima por su sustrato? Porque, si el enzima y el sustrato forman un complejo en el que se alcanza el estado de transición, llegará un momento al aumentar la concentración de sustrato en el que todos los centros activos de las moléculas de enzima estén ocupados por moléculas de sustrato. A partir de este momento, posteriores aumentos en la concentración de sustrato no provocarán ya aumentos en la velocidad de reacción (las moléculas de sustrato adicionales tendrán que “esperar” a que quede algún centro activo vacío para poder acceder a él). 83. Desarrolla el concepto de energía de fijación entre el enzima y el sustrato. Comenta brevemente el papel que juega la energía de fijación en la actividad de los enzimas. Cuando el sustrato se fija al centro activo se establecen entre ambos una serie de interacciones débiles, energéticamente favorables, entre grupos funcionales complementarios de ambos. La energía liberada al formarse estas interacciones se conoce como energía de fijación. Diversas consideraciones físico-químicas han llevado a la conclusión de que la energía de fijación es la principal fuente de energía que utilizan los enzimas para llevar a sus sustratos al estado de transición, salvando así la barrera de energía de activación. 84. ¿Por qué resulta inadecuada la imagen de la llave y la cerradura para referirse a la interacción entre el sustrato y el enzima? ¿Qué otra imagen podría resultar más adecuada y por qué? En muchas reacciones enzimáticamente catalizadas el centro activo no es exactamente complementario con la molécula(s) de sustrato, sino más bien con las especies del estado de transición. El enzima distorsiona la estructura química del sustrato llevándolo al estado de transición. A la vista de estas consideraciones se ha propuesto el modelo "mano-guante", que quizás ilustre mejor este tipo de interacción. 85. ¿Por qué decimos que el grado de especificidad de los enzimas es muy variado? Porque algunos de ellos reconocen a una única especie molecular y a ninguna otra aunque se le parezca, mientras que otros reconocen una gama más o menos amplia de moléculas con algún rasgo estructural común. 86. ¿A qué llamamos pH óptimo de un enzima? ¿Por qué los enzimas pierden su actividad a valores de pH alejados de su pH óptimo? pH óptimo es aquél para el que la actividad del enzima es máxima. Los enzimas pierden su activadad cuando el pH se aleja de su valor óptimo porque se desnaturalizan como consecuencia del cambio en el pH. 87. ¿Qué diferencia existe entre la inhibición enzimática competitiva y la incompetitiva?  Inhibición competitiva.- El inhibidor tiene una estructura química similar a la del sustrato y compite con él por el acceso al centro activo. Cuando el inhibidor está ocupando el centro activo impide al sustrato el acceso a éste.
  • 18.  Inhibición incompetitiva.- El inhibidor no guarda parecido con el sustrato. No se une al centro activo bloqueando su acceso sino al complejo enzima-sustrato bloqueando la liberación de los productos. 88. ¿Por qué son necesarios los enzimas reguladores? ¿Qué tipos de enzimas reguladores conoces? Son necesarios porque la célula se rige por un principio de economía molecular que la obliga a no desperdiciar tiempo ni energía en procesos que no le son útiles en un momento dado. Ello se consigue, entre otros mecanismos, por medio de los enzimas reguladores, que “apagan” o “encienden” determinadas rutas metabólicas. Los enzimas reguladores son de dos tipos: enzimas alostéricos y enzimas modulados covalentemente. 89. ¿A qué llamamos enzimas alostéricos? ¿Y moduladores alostéricos? ¿Qué tipos de moduladores alostéricos conoces? Son enzimas que, además del centro activo a través del cual interactúan con el sustrato, disponen de otro centro de unión, el centro alostérico, a través del cual interactúan con una molécula denominada efector o modulador. El modulador es responsable de la interconversión entre las formas activa e inactiva del enzima. 90. ¿En qué consiste el control feed-back o inhibición por el producto final? Es un tipo de control del metabolismo en el que uno de los primeros enzimas de una ruta metabólica es un enzima alostérico que resulta inhibido por el producto final de la ruta. Se trata de un control heterotrópico por modulador negativo. 91. Señala las principales diferencias entre los enzimas alostéricos y los enzimas modulados covalentemente. Enzimas alostéricos.- Presentan dos formas, una activa y otra inactiva, que difieren en su conformación tridimensional y se interconvierten por acción de un modulador que interactúa con ellas Enzimas modulados covalentemente.- Presentan dos formas, una activa y otra inactiva, que se interconvierten por modificación covalente de algún grupo químico de sus cadenas polipeptídicas. La modificación covalente está catalizada por un segundo enzima llamado enzima modulador. 92. ¿A qué llamamos zimógenos? ¿Cómo se activan? Los zimógenos son las formas inactivas en las que son sintetizados algunos enzimas. Se activan por modificación química (eliminación de tramos de la cadena polipeptídica) catalizada por otros enzimas. 93. ¿De qué maneras pueden actuar los iones metálicos como cofactores enzimáticos? · Como centro catalítico primario del enzima
  • 19. · Como grupo puente para la unión del sustrato · Como agente estabilizador de la conformación tridimensional activa del enzima. 94. Explica la relación que existe entre coenzimas y vitaminas. Algunas vitaminas son precursores químicos a partir de los cuales las células pueden sintetizar algunos de sus coenzimas. 95. Explica por qué las necesidades exógenas de vitaminas varían ampliamente de unas especies a otras. Una vitamina es, por definición, una sustancia que un organismo dado es incapaz de sintetizar y por lo tanto necesita incorporar a partir de su entorno. La misma sustancia puede ser sintetizada por un organismo diferente, por lo que para éste no será una vitamina. 96. ¿A qué llamamos rutas metabólicas? A secuencias de reacciones químicas consecutivas, enzimáticamente catalizadas, y ligadas por intermediarios comunes. 97. Enuncia las principales diferencias entre el catabolismo y el anabolismo. · Catabolismo.- proceso degradativo, oxidante y exergónico · Anabolismo.- proceso constructivo, reductor y endergónico. 98. ¿Qué es una ruta anfibólica? Pon un ejemplo que conozcas. Es una ruta que es compartida por el catabolismo y el anabolismo. Un ejemplo es el ciclo de Krebs. 99. ¿Podría una célula quimiótrofa utilizar el CO2 como fuente de carbono? ¿Cómo llamarías a este tipo de célula? Sí. Se trataría de una célula quimiolitótrofa. 100. Las células anaerobias no pueden utilizar el oxígeno como aceptor último de electrones en las reacciones redox que utilizan para obtener energía. ¿Qué tipo de compuestos utilizan? Pon algún ejemplo de este tipo de compuestos. Utilizan moléculas orgánicas que resultan reducidas. Tal es el caso del ácido pirúvico que resulta de la glucolisis, al que las células anaerobias reducen a ácido láctico. 101. Haz una clasificación de los distintos tipos celulares atendiendo simultáneamente a las fuentes de carbono y energía que utilizan para su metabolismo.
  • 20. TIPO DE CÉLULA FUENTE DE MATERIA FUENTE DE ENERGÍA Fotolitótrofas Materia inorgánica Luz Fotoorganótrofas Materia orgánica Luz Quimiolitótrofas Materia inorgánica Reacciones redox Quimioorganótrofas Materia orgánica Reacciones redox 102. ¿Cuándo podemos decir que una célula es anaerobia facultativa? Pon un ejemplo de este tipo de células. Una célula anaerobia facultativa es aquélla que puede utilizar el oxígeno como aceptor de electrones paras sus oxidaciones respiratorias, pero que puede utilizar la fermentación láctica como mecanismo de emergencia durante cortos períodos en los que escasea el oxígeno. Un ejemplo son las células musculares. 103. Las células de las hojas de las plantas verdes ¿son fotolitótrofas en todas las situaciones? Justifica la respuesta. No, en ausencia de luz funcionan en modo quimioorganótrofo. 104. La obtención de ATP a partir de ADP y fosfato inorgánico se denomina fosforilación¿qué tipos de fosforilación conoces? Rastrea las rutas catabólicas que hemos estudiado y localiza en ellas dos ejemplos de fosforilación a nivel de sustrato.  Fosforilación a nivel de sustrato.- La energía liberada en la rotura de un enlace de una biomolécula es directamente utilizada para formar el enlace fosfato del ATP.  Fosforilación acoplada al transporte electrónico o Fosforilación acoplada al transporte electrónico mitocondrial (fosforilación oxidativa). o Fosforilación acoplada al transporte electrónico fotosintético (fotofosforilación). En la segunda fase de la glucolisis se dan dos fosforilaciones a nivel de sustrato que rinden las dos moléculas de ATP que se obtienen. Durante el ciclo de Krebs, en la etapa en la que el succinil-CoA da lugar al succinato, también tiene lugar una fosforilación de este tipo. 105. ¿Por qué decimos que el ATP es la moneda energética de la célula? Porque la variación de energía libre que supone la hidrólisis o la formación de su enlace fosfato terminal supone una dosis energética adecuada para muchas de las reacciones químicas celulares. 106. Escribe las formas oxidada y reducida de dos coenzimas transportadores de electrones.  Forma oxidada: NAD+ / Forma reducida: NADH  Forma oxidada: FAD / Forma reducida: FADH2
  • 21. 107. ¿Por qué decimos que la degradación de los glúcidos se lleva a cabo "vía glucosa"? Porque para ser degradados, todos los glúcidos se transforman en glucosa o en algún producto de sus rutas degradativas. 108. ¿En qué lugar de la célula tiene lugar la glucolisis? ¿De qué compuesto parte esta ruta metabólica? ¿Qué compuestos se obtienen al final de la misma? Lugar.- citosol Compuesto de partida.- glucosa. Productos finales.- 2 piruvato, 2 ATP, 2 NADH 109. ¿A qué llamamos fermentación? ¿Con qué objeto llevan a cabo las células este proceso? Son reacciones químicas adicionales a la glucolisis en las que la transformación del piruvato en otros compuestos es aprovechada para reciclar los coenzimas transportadores de electrones de esta ruta metabólica. 110. Cita dos tipos de fermentación que conozcas y señala en cada uno de ellos cuál es el aceptor último de electrones. Fermentación láctica.- el aceptor es el piruvato, que se transforma en lactato. Fermentación alcohólica.- el aceptor es el acetaldehído (resultado de la descarboxilación del piruvato), que se reduce a etanol. 111. ¿Para qué utilizan las células la ruta de las pentosas?  Para obtener pentosas para la síntesis de nucleótidos.  Para obtener poder reductor en forma de NADPH para la síntesis de ácidos grasos. 112. ¿En qué lugar de la célula tiene lugar el ciclo de Krebs? Indica los compuestos que entran y salen del ciclo en cada vuelta. Lugar.- Matriz mitocondrial Entrada.- 1 grupo acetilo del acetil-CoA Salida.- 2 CO2, 1 GTP, 3 NADH, 1 FADH2 113. ¿De dónde procede el acetil-CoA que entra en el ciclo de Krebs?
  • 22. · De la descarboxilación oxidativa del piruvato que resulta de la glucolisis. · De la beta oxidación de los ácidos grasos. 114. ¿Por qué decimos que el transporte electrónico mitocondrial es un proceso "cuesta abajo"? Porque transcurre desde buenos dadores de electrones (sustancias que tienden a ceder electrones) a buenos aceptores (sustancias que tienden a aceptarlos), por lo que es un proceso exergónico, o termodinámicamente favorable. 115. ¿De dónde proceden los electrones que son transportados hasta el oxígeno por la cadena de transporte electrónico mitocondrial? De los coenzimas reducidos (NADH Y FADH2) que se van obteniendo en las distintas rutas del catabolismo (glucolisis, ciclo de Krebs, beta oxidación de los ácidos grasos, etc.). 116. ¿Cómo llega a la cadena de transporte electrónico mitocondrial el poder reductor generado en el hialoplasma durante la glucolisis? A través de sistemas de lanzadera, que llevan este poder reductor a la matriz mitocondrial en forma de moléculas reducidas sin necesidad de que entre físicamente el NADH obtenido en la glucolisis. 117. Algunos compuestos como el 2,4, dinitrofenol tienen el efecto de desacoplar el transporte electrónico de la fosforilación oxidativa. Para ello, se introducen entre los lípidos de la membrana mitocondrial interna volviéndola permeable a los iones hidrógeno. ¿Podrías explicar este efecto desacoplante? Al volver permeable a los iones H+ la membrana mitocondrial interna, éstos pueden regresar libremente a la matriz a favor de su gradiente electroquímico sin tener que hacerlo a través de la ATP sintetasa, con la consiguiente detención de la fosforilación oxidativa. 118. Explica por qué los electrones procedentes del NADH producen más ATP al circular por la cadena respiratoria que los procedentes del FADH2. Porque el NADH cede sus electrones al comienzo de la cadena respiratoria y éstos recorren todos los centros de bombeo de protones que crean el gradiente que luego se utiliza para fabricar ATP, mientras que el FADH2 los cede a un componente de la cadena que está después del primer centro de bombeo de protones, con lo que, al bombearse menos protones, se obtienen menor cantidad de ATP. 119. Calcula cuantas moléculas de ATP se obtienen mediante la degradación total de una molécula de glucosa hasta CO2 y H2O. Resultado: 36-38 moléculas de ATP (en función del sistema de lanzadera utilizado).
  • 23. 120. ¿Podría tener lugar la fosforilación oxidativa si los componentes de la cadena respiratoria se encontrasen libres en disolución en lugar de estar anclados en la membrana mitocondrial interna? No. El mecanismo del acoplamiento quimiosmótico de la fosforilación oxidativa se basa en el bombeo de protones a través de una membrana que es impermeable a ellos. Si los transportadores se encontrasen libres en disolución, el transporte electrónico no podría generar el gradiente de concentración de protones que después se utiliza para fabricar ATP. 121. Explica la diferencia entre el anabolismo autótrofo y el anabolismo heterótrofo. ¿Qué tipos de células pueden realizar uno y otro tipo de anabolismo? Anabolismo autótrofo.- Se sintetizan moléculas orgánicas sencillas a partir de moléculas inorgánicas (CO2, agua, etc.). Lo llevan a cabo sólo las células autótrofas. Anabolismo heterótrofo.- Se sintetizan moléculas orgánicas progresivamente más complejas a partir de moléculas orgánicas sencillas (piruvato, gliceradehido,…). Lo llevan a cabo todas las células. 122. ¿Qué tipos de sustancias inorgánicas se fijan en forma de materia orgánica en el proceso de fotosíntesis? CO2 y sales minerales (nitratos y sulfatos) 123. Localiza los pigmentos responsables de la fotosíntesis en una célula procariota y en una célula eucariota. Célula procariota.- En unas invaginaciones de la membrana plasmática denominadas cromatóforos. Célula eucariota.- En la membrana tilacoidal de los cloroplastos. 124. Resume en pocas palabras los procesos de la fase luminosa y de la fase oscura de la fotosíntesis.  Fase luminosa.- Fijación de la energía radiante de la luz solar en forma de energía química del ATP y NADPH.  Fase oscura.- Utilización de la energía química el ATP y NADPH para fijar el CO2 y las sales minerales en forma de compuestos orgánicos. 125. ¿En qué tipo de estructuras están organizados los pigmentos fotosintéticos? Describe brevemente una de estas estructuras. Están organizados en fotosistemas. Constan de: a) un complejo antena formado por varios centenares de moléculas de clorofila y carotenoides y proteínas que canalizan la energía luminosa hacia b) el centro de reacción, formado por la clorofila diana junto con un dador y un aceptor de electrones, que varían según el tipo de fotosistema.
  • 24. 126. ¿A qué llamamos complejo antena? ¿Y centro de reacción? ¿Cómo se denomina el conjunto formado por ambos? Un complejo antena está formado por varios centenares de moléculas de clorofila y carotenoides y proteínas que canalizan la energía luminosa hacia el centro de reacción , formado por la clorofila diana junto con un dador y un aceptor de electrones, que varían según el tipo de fotosistema. El conjunto del complejo antena y el centro de reacción se denomina fotosistema. 127. ¿En qué se diferencian fundamentalmente el transporte electrónico mitocondrial del transporte electrónico fotosintético? El transporte electrónico mitocondrial es un proceso exergónico, liberador de energía, que transcurre a favor de gradiente de potencial redox. El transporte electrónico fotosintético es un proceso endergónico, que requiere energía, y que transcurre en contra de gradiente de potencial redox 128. ¿En qué lugar de la célula tiene lugar la fase luminosa de la fotosíntesis? ¿Y la fase oscura? Fase luminosa: en la membrana tilacoidal del cloroplasto. Fase oscura: en el estroma del cloroplasto. 129. Describe brevemente el flujo de electrones característico del transporte electronico fotosintético (puedes ayudarte de un esquema). La luz excita un par de electrones del PSII que son rápidamente repuestos por lo procedentes de la fotólisis de una molécula de agua. Los electrones excitados de PSII son cedidos al primer tramo de la cadena de transporte electrónico fotosintético de la membrana tilacoidal, donde, a favor de gradiente de potencial redox, son transportados hasta el PSI (con el consiguiente bombeo de protones que se utilizará para generar ATP). Los electrones que llegan al PSI ocupan el lugar de los que acaban de ser excitados por la luz, y que son
  • 25. cedidos al segundo tramo de la cadena de transporte electrónico que los conduce al NADP+, el cual se reduce a NADPH. 130. ¿Con qué objeto llevan a cabo las células la fotofosforilación cíclica? ¿En qué se diferencia de la fotofosforilación no cíclica? Para obtener moléculas adicionales de ATP sin obtener al mismo tiempo NADPH, ya que en la fase oscura se necesita más ATP que NADPH. En la cíclica, al contrario que en la no cíclica, no interviene el agua, no se libera oxígeno, no interviene el fotosistema II y no se obtiene NADPH. 131. ¿Por qué se considera poco afortunada la denominación “fase oscura” de la fotosíntesis? Porque, aunque puede transcurrir en la oscuridad, depende de los productos de la fase luminosa (ATP y NADPH). En ausencia de luz, las reacciones de la fase oscura sólo pueden continuar hasta que se agotan los productos de la fase luminosa. 132. Enuncia los tres procesos principales que configuran el ciclo de Calvin.  Fijación del CO2 a la ribulosa-bifosfato.  Reducción del ácido fosfoglicérico a gliceraldehido-fosfato.  Regeneración de la ribulosa bifosfato. 133. ¿Cuál es el destino de los fosfatos de triosa que se generan en el ciclo de Calvin? En parte se desvían hacia la síntesis de glucosa mediante la ruta de la gluconeogénesis, y en parte se utilizan para regenerar la ribulosa difosfato. 134. ¿A qué se debe el fenómeno de la fotorrespiración? ¿Por qué se denomina así? Se debe a que el enzima RUBISCO puede utilizar el oxígeno como sustrato en lugar del CO2, con el resultado de destrucción de materia orgánica. Se denomina así porque el intercambio de gases asociado a este proceso es idéntico al que tiene lugar en la respiración celular e inverso al que caracteriza a la fotosíntesis normal. 135. ¿Cómo solucionan algunas plantas el problema causado por la fotorrespiración? ¿Cómo se denominan estas plantas? Utilizando para la fijación del CO2 una ruta alternativa al ciclo de Calvin que es la ruta de Hatch y Slack, en la que el CO2 se fija inicialmente sobre un compuesto de cuatro carbonos. Se denomina plantas C4.
  • 26. 136. ¿En qué forma obtienen las plantas el nitrógeno y el azufre que necesitan para construir determinadas biomoléculas? En forma de sales minerales que se encuentran en el suelo (nitratos y sulfatos) 137. ¿Cómo emplean las células fotosintéticas los productos de la fase luminosa para la fijación del nitrógeno y el azufre? Los nitratos son inicialmente reducidos a nitritos y después a amoníaco, a expensas del poder reductor del NADPH obtenido en la fase luminosa. A continuación, el amoníaco es incorporado al esqueleto carbonado del ácido α-cetoglutárico para dar ácido glutámico en una reacción que consume ATP procedente también de la fase luminosa. De modo parecido, los sulfatos son reducidos a sulfitos y después a ácido sulfhídrico, que a continuación se incorpora en el esqueleto de algunos aminoácidos como la cisteína. 138. Explica cómo varía la intensidad fotosintética en función de la concentración de dióxido de carbono. ¿Por qué para niveles altos de CO2 la intensidad fotosintética se torna insensible a este factor? La intensidad fotosintética crece con la concentración de CO2, pero para valores altos de ésta la intensidad fotosintética tiende a estabilizarse en un valor máximo. La curva hiperbólica que describe la variación de la IF con la concentración de CO2 está reflejando el efecto de saturación del enzima RUBISCO por su sustrato (CO2). 139. ¿Cómo afecta la mayor o menor concentración de O2 a la intensidad fotosintética? ¿A qué puede ser debido este efecto? La intensidad fotosintética disminuye con la concentración de oxígeno. Ello es debido al fenómeno de la fotorrespiración. 140. ¿En qué se diferencian fundamentalmente la fotosíntesis de la quimiosíntesis? En la fuente de energía para la obtención de ATP y NADPH, que es la luz en la fotosíntesis y reacciones redox en las que se oxidan sustratos inorgánicos relativamente reducidos en la quimiosíntesis. 141. ¿En qué consiste la gluconeogénesis? ¿En qué lugar de la célula transcurre? La gluconeogénisis es una ruta anabólica en la que se genera glucosa a partir de piruvato o lactato. Tiene lugar en el citosol.
  • 27. 142. ¿De qué metabolito parte la síntesis reductora de ácidos grasos? ¿En qué lugar de la célula transcurre? Parte de Acetil-CoA. Transcurre en el citosol.