SlideShare una empresa de Scribd logo
1 de 3
Descargar para leer sin conexión
ÁNGULOS
NIVEL I
1. Calcular el valor de “x”
a) 32° b) 22° c) 28°
d) 20° e) 18°
2. Calcular el valor de “ ”
a) 15° b) 25° c) 20°
d) 30° e) 35°
3. Calcular el valor de “x”
a) 40° b) 45° c) 36°
d) 48° e) 50°
4. Calcular “ ”
a) 50° b) 60° c) 45°
d) 40° e) 33°
5. Calcular x. Si m AOD = 102°
a) 28° b) 30° c) 34°
d) 38° e) 36°
6. En la figura mostrada hallar x. Si - = 20°
a) 20° b) 35° c) 40°
d) 45 e) 55°
7. La suma del Complemento y el Suplemento de un
ángulo es igual a 140°. Hallar la medida del ángulo.
a) 60° b) 61° c) 62°
d) 64° e) 65°
8. Indique el triple de la mitad del Complemento de
40°.
a) 70° b) 75° c) 80°
d) 85° e) 86°
9. Si POR = 128°. Calcular
a) 44° b) 56° c) 46°
d) 48° e) 50°
10. Hallar el Suplemento de 126°
a) 44° b) 54° c) 64°
d) 58° e) 47°
11. Hallar el Complemento del Suplemento de 150°
a) 50° b) 60° c) 30°
d) 48° e) 40°
12. Hallar el Suplemento del Complemento de 80°.
a) 160° b) 150° c) 170°
d) 135° e) 140°
13. En la figura calcular x:
a) 30° b) 32° c) 35°
d) 36° e) 40°
MATEMÁTICA Geometría 2º de Secundaria
“ALAS PERUANAS” - FILIAL CHICLAYO
INSTITUCIÓN EDUCATIVA PARTICULAR
14. Calcular la medida de un ángulo sabiendo que el
suplemento del triple del Complemento de su
medida, es igual a la misma medida.
a) 45° b) 30° c) 60°
d) 40° e) 36°
15. Si el complemento de la medida de un ángulo, es al
Suplemento de su misma medida como 2 es a 5.
Calcular dicha medida.
a) 27° b) 36° c) 18°
d) 60° e) 30°
16. Calcular la medida de un ángulo sabiendo que el
complemento de su medida es igual a la mitad de la
misma medida.
a) 30° b) 45° c) 75°
d) 80° e) 60°
NIVEL II
1. Del gráfico m BOC = 72°. Calcular la medida del
ángulo formado por las bisectrices de AOB y COD.
a) 120° b) 126° c) 130°
d) 132° e) 135°
2. Hallar “x”. Si OB es bisectriz del ángulo AOC.
a) 20° b) 10° c) 12°
d) 14° e) 30°
3. Se tienen los ángulos adyacentes AOˆ B y BOˆ C
que se diferencian en 48°. Calcular la medida del
ángulo formado por la bisectriz del ángulo AOC y el
rayo OB
a) 48° b) 24° c) 18°
d) 12° e) 6°
4. Se tienen los ángulos consecutivos AOˆ B, BOˆ C y C
Oˆ D, tal que m AOC= BOD=90°. Hallar la
medida del ángulo formado por las bisectrices de A
Oˆ B y C Oˆ D.
a) 80° b) 82° c) 85°
d) 88° e) 90°
5. En la figura hallar m MOC. Si m BOC- m AOC
= 40°. Además OM bisectriz del ángulo AOB.
a) 12° b) 15° c) 18°
d) 20° e) 36°
6. Dados los ángulos consecutivos A Oˆ B y B Oˆ C. Si
m AOB + m AOC = 118°
Hallar m AOM. Siendo OM la bisectriz de BOˆ C.
a) 59° b) 28° c) 36°
d) 46° e) 48°
7. SI m BOD = 120°. Hallar la medida del ángulo
formado por las bisectrices de A Oˆ B y C Oˆ D.
a) 90° b) 100° c) 110°
d) 120° e) 105°
8. Hallar m MON. Si m AOC=120° y OM es
bisectriz de AOB.
a) 30° b) 40° c) 45°
d) 20° e) 60°
9. En la figura. Calcular “x”
a) 10°
b) 15°
c) 20°
d) 25°
e) 30°
10. En la figura, calcular la m BOD. Si m AOC = 100°
y m XOY = 80°
a) 50° b) 90° c) 70°
d) 60° e) 120°
11. Hallar la medida del ángulo formado por las
bisectrices de A Oˆ B y B Oˆ C.
a) 30°
b) 60°
c) 45°
d) 37°
e) 53°
12. En la figura calcular “x”
a) 20°
b) 10°
c) 12°
d) 15°
e) 18°
13. En la figura calcular la medida del ángulo formado
por las bisectrices de los ángulos AOB y COD.
a) 150° b) 115° c) 105°
d) 125° e) 135°
14. Se tienen los ángulos adyacentes AOB y BOC tal
que m AOB = 40°. Calcular la medida del ángulo
que forman las bisectrices de los ángulos AOC y
BOC.
a) 20° b) 40° c) 30°
d) 25° e) 10°
15. Se tienen los ángulos adyacentes AOB y BOC de
modo que m AOB - m BOC = 48°. Luego se
trazan las bisectrices OM del AOB, ON del
BOC y OS del MON. Calcular la m SOB.
a) 48° b) 32° c) 18°
d) 24° e) 12°
16. Calcular la medida de un ángulo sabiendo que el
Suplemento del Complemento de su medida es
igual al séxtuplo de la misma medida.
a) 12° b) 15° c) 18°
d) 20° e) 30°

Más contenido relacionado

La actualidad más candente

Semana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triplesSemana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triples
Rodolfo Carrillo Velàsquez
 
Ejercicios de Geometría
Ejercicios de GeometríaEjercicios de Geometría
Ejercicios de Geometría
JRIOSCABRERA
 
Trigonometria 1 razones trigonométricas de ángulos agudos
Trigonometria 1 razones trigonométricas de ángulos agudosTrigonometria 1 razones trigonométricas de ángulos agudos
Trigonometria 1 razones trigonométricas de ángulos agudos
rosendozaulincanajar
 
Teoria y problemas de congruencia de triangulos ccesa007
Teoria y problemas de congruencia de triangulos  ccesa007Teoria y problemas de congruencia de triangulos  ccesa007
Teoria y problemas de congruencia de triangulos ccesa007
Demetrio Ccesa Rayme
 
Cuadrilateros y trapecios tercero
Cuadrilateros y trapecios terceroCuadrilateros y trapecios tercero
Cuadrilateros y trapecios tercero
JRIOSCABRERA
 
Ecuaciones exponenciales
Ecuaciones exponencialesEcuaciones exponenciales
Ecuaciones exponenciales
lindaloretanita
 

La actualidad más candente (20)

Repaso de 6to ii b
Repaso de 6to ii bRepaso de 6to ii b
Repaso de 6to ii b
 
Semana 1 ángulo trigonométrico
Semana 1 ángulo trigonométricoSemana 1 ángulo trigonométrico
Semana 1 ángulo trigonométrico
 
Líneas Notables
Líneas NotablesLíneas Notables
Líneas Notables
 
Sb1 2016 GEOMETRIA_01
Sb1 2016 GEOMETRIA_01Sb1 2016 GEOMETRIA_01
Sb1 2016 GEOMETRIA_01
 
Ficha 1 sistemas de medidas angulares
Ficha 1  sistemas de medidas angularesFicha 1  sistemas de medidas angulares
Ficha 1 sistemas de medidas angulares
 
Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentes
 
Resolucion de triangulos rectangulos i
Resolucion de triangulos rectangulos iResolucion de triangulos rectangulos i
Resolucion de triangulos rectangulos i
 
Trigonometria Pre-Uni
Trigonometria Pre-UniTrigonometria Pre-Uni
Trigonometria Pre-Uni
 
Cuadrilateros repaso
Cuadrilateros repasoCuadrilateros repaso
Cuadrilateros repaso
 
Semana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triplesSemana 10 identidades trigonometricas de angulos triples
Semana 10 identidades trigonometricas de angulos triples
 
Angulos ejercicioss varios
Angulos  ejercicioss variosAngulos  ejercicioss varios
Angulos ejercicioss varios
 
áNgulos formados por rectas paralelas y secantes
áNgulos formados por rectas paralelas y secantesáNgulos formados por rectas paralelas y secantes
áNgulos formados por rectas paralelas y secantes
 
Ejercicios de Geometría
Ejercicios de GeometríaEjercicios de Geometría
Ejercicios de Geometría
 
Trigonometria 1 razones trigonométricas de ángulos agudos
Trigonometria 1 razones trigonométricas de ángulos agudosTrigonometria 1 razones trigonométricas de ángulos agudos
Trigonometria 1 razones trigonométricas de ángulos agudos
 
4to sec ficha 1
4to sec   ficha 14to sec   ficha 1
4to sec ficha 1
 
OLIMPAMER - NICANOR RIVERA CACERES
OLIMPAMER - NICANOR RIVERA CACERESOLIMPAMER - NICANOR RIVERA CACERES
OLIMPAMER - NICANOR RIVERA CACERES
 
Aduni repaso geometria 1
Aduni repaso geometria 1Aduni repaso geometria 1
Aduni repaso geometria 1
 
Teoria y problemas de congruencia de triangulos ccesa007
Teoria y problemas de congruencia de triangulos  ccesa007Teoria y problemas de congruencia de triangulos  ccesa007
Teoria y problemas de congruencia de triangulos ccesa007
 
Cuadrilateros y trapecios tercero
Cuadrilateros y trapecios terceroCuadrilateros y trapecios tercero
Cuadrilateros y trapecios tercero
 
Ecuaciones exponenciales
Ecuaciones exponencialesEcuaciones exponenciales
Ecuaciones exponenciales
 

Similar a Ángulos 2º sec

Semana 01 geometria plana 2021
Semana 01   geometria plana 2021Semana 01   geometria plana 2021
Semana 01 geometria plana 2021
elmojsy
 
Ángulos Repaso
Ángulos RepasoÁngulos Repaso
Ángulos Repaso
sitayanis
 

Similar a Ángulos 2º sec (20)

Ángulos y triángulos separata cepeban
Ángulos y triángulos separata cepebanÁngulos y triángulos separata cepeban
Ángulos y triángulos separata cepeban
 
Ejercicios propuestos-angulos
Ejercicios propuestos-angulosEjercicios propuestos-angulos
Ejercicios propuestos-angulos
 
Geometría trilce
Geometría   trilceGeometría   trilce
Geometría trilce
 
practica de Ángulos
practica de Ángulos practica de Ángulos
practica de Ángulos
 
Semana 01 geometria plana 2021
Semana 01   geometria plana 2021Semana 01   geometria plana 2021
Semana 01 geometria plana 2021
 
Práctica de angulos 1°
Práctica de angulos 1°Práctica de angulos 1°
Práctica de angulos 1°
 
Balotario de geometria final 2013 ok
Balotario de geometria final 2013 okBalotario de geometria final 2013 ok
Balotario de geometria final 2013 ok
 
Cuadriláteros I
Cuadriláteros ICuadriláteros I
Cuadriláteros I
 
Problemas de aplicación ángulos y segmentos
Problemas de aplicación ángulos y segmentosProblemas de aplicación ángulos y segmentos
Problemas de aplicación ángulos y segmentos
 
Situaciones Geométricas Ángulos y Rectas ccesa007
Situaciones Geométricas Ángulos y Rectas  ccesa007Situaciones Geométricas Ángulos y Rectas  ccesa007
Situaciones Geométricas Ángulos y Rectas ccesa007
 
Banco Geometria Trigonometria FCYT UMSS
Banco Geometria Trigonometria FCYT UMSSBanco Geometria Trigonometria FCYT UMSS
Banco Geometria Trigonometria FCYT UMSS
 
Guia angulos
Guia angulosGuia angulos
Guia angulos
 
Trigo nivel iv
Trigo nivel ivTrigo nivel iv
Trigo nivel iv
 
Ángulos Repaso
Ángulos RepasoÁngulos Repaso
Ángulos Repaso
 
Angulos ab
Angulos abAngulos ab
Angulos ab
 
Angulos 1º
Angulos 1ºAngulos 1º
Angulos 1º
 
Angulos ab
Angulos abAngulos ab
Angulos ab
 
A N G U L O S A B
A N G U L O S  A BA N G U L O S  A B
A N G U L O S A B
 
Angulos ab
Angulos abAngulos ab
Angulos ab
 
Sebastian burbano primero c
Sebastian burbano primero cSebastian burbano primero c
Sebastian burbano primero c
 

Más de cjperu (20)

Teoría de exponentes ec. exponenciales
Teoría de exponentes   ec. exponencialesTeoría de exponentes   ec. exponenciales
Teoría de exponentes ec. exponenciales
 
Prospecto 2016 unprg nueva estructura de examen
Prospecto 2016  unprg nueva estructura de examenProspecto 2016  unprg nueva estructura de examen
Prospecto 2016 unprg nueva estructura de examen
 
Lógica
LógicaLógica
Lógica
 
Reducción al primer cuadrante 4º sec
Reducción al primer cuadrante   4º secReducción al primer cuadrante   4º sec
Reducción al primer cuadrante 4º sec
 
Ecuaciones trigonometricas práctica
Ecuaciones trigonometricas   prácticaEcuaciones trigonometricas   práctica
Ecuaciones trigonometricas práctica
 
Ley de senos
Ley de senosLey de senos
Ley de senos
 
Ley de cosenos
Ley de cosenosLey de cosenos
Ley de cosenos
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Desigualdades e Inecuaciones
Desigualdades e InecuacionesDesigualdades e Inecuaciones
Desigualdades e Inecuaciones
 
Bases conamat2015
Bases conamat2015Bases conamat2015
Bases conamat2015
 
Logica proposicional ii
Logica proposicional iiLogica proposicional ii
Logica proposicional ii
 
Lógica Proposicional
Lógica ProposicionalLógica Proposicional
Lógica Proposicional
 
Álgebra pre
Álgebra preÁlgebra pre
Álgebra pre
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Factorización
FactorizaciónFactorización
Factorización
 
Bingo Algebraico - 1º sec
Bingo Algebraico - 1º secBingo Algebraico - 1º sec
Bingo Algebraico - 1º sec
 
Factorización fc - tcp - dc - as
Factorización   fc - tcp - dc - asFactorización   fc - tcp - dc - as
Factorización fc - tcp - dc - as
 
Robotica poleas
Robotica   poleasRobotica   poleas
Robotica poleas
 
Dominó de factorización
Dominó de factorizaciónDominó de factorización
Dominó de factorización
 

Último

Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdfEstrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Demetrio Ccesa Rayme
 
Bitacora de Inteligencia Artificial y Herramientas Digitales HD4 Ccesa007.pdf
Bitacora de Inteligencia Artificial  y Herramientas Digitales HD4  Ccesa007.pdfBitacora de Inteligencia Artificial  y Herramientas Digitales HD4  Ccesa007.pdf
Bitacora de Inteligencia Artificial y Herramientas Digitales HD4 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Demetrio Ccesa Rayme
 

Último (20)

Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdfGran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
 
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdfEstrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
 
Bitacora de Inteligencia Artificial y Herramientas Digitales HD4 Ccesa007.pdf
Bitacora de Inteligencia Artificial  y Herramientas Digitales HD4  Ccesa007.pdfBitacora de Inteligencia Artificial  y Herramientas Digitales HD4  Ccesa007.pdf
Bitacora de Inteligencia Artificial y Herramientas Digitales HD4 Ccesa007.pdf
 
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
El Futuro de la Educacion Digital  JS1  Ccesa007.pdfEl Futuro de la Educacion Digital  JS1  Ccesa007.pdf
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
 
Motivados por la esperanza. Esperanza en Jesús
Motivados por la esperanza. Esperanza en JesúsMotivados por la esperanza. Esperanza en Jesús
Motivados por la esperanza. Esperanza en Jesús
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdf
 
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdfEFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
 
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVOSESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
Estudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado BásicoEstudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado Básico
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definiciones
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
En un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdfEn un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdf
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Síndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuaniSíndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuani
 
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
 

Ángulos 2º sec

  • 1. ÁNGULOS NIVEL I 1. Calcular el valor de “x” a) 32° b) 22° c) 28° d) 20° e) 18° 2. Calcular el valor de “ ” a) 15° b) 25° c) 20° d) 30° e) 35° 3. Calcular el valor de “x” a) 40° b) 45° c) 36° d) 48° e) 50° 4. Calcular “ ” a) 50° b) 60° c) 45° d) 40° e) 33° 5. Calcular x. Si m AOD = 102° a) 28° b) 30° c) 34° d) 38° e) 36° 6. En la figura mostrada hallar x. Si - = 20° a) 20° b) 35° c) 40° d) 45 e) 55° 7. La suma del Complemento y el Suplemento de un ángulo es igual a 140°. Hallar la medida del ángulo. a) 60° b) 61° c) 62° d) 64° e) 65° 8. Indique el triple de la mitad del Complemento de 40°. a) 70° b) 75° c) 80° d) 85° e) 86° 9. Si POR = 128°. Calcular a) 44° b) 56° c) 46° d) 48° e) 50° 10. Hallar el Suplemento de 126° a) 44° b) 54° c) 64° d) 58° e) 47° 11. Hallar el Complemento del Suplemento de 150° a) 50° b) 60° c) 30° d) 48° e) 40° 12. Hallar el Suplemento del Complemento de 80°. a) 160° b) 150° c) 170° d) 135° e) 140° 13. En la figura calcular x: a) 30° b) 32° c) 35° d) 36° e) 40° MATEMÁTICA Geometría 2º de Secundaria “ALAS PERUANAS” - FILIAL CHICLAYO INSTITUCIÓN EDUCATIVA PARTICULAR
  • 2. 14. Calcular la medida de un ángulo sabiendo que el suplemento del triple del Complemento de su medida, es igual a la misma medida. a) 45° b) 30° c) 60° d) 40° e) 36° 15. Si el complemento de la medida de un ángulo, es al Suplemento de su misma medida como 2 es a 5. Calcular dicha medida. a) 27° b) 36° c) 18° d) 60° e) 30° 16. Calcular la medida de un ángulo sabiendo que el complemento de su medida es igual a la mitad de la misma medida. a) 30° b) 45° c) 75° d) 80° e) 60° NIVEL II 1. Del gráfico m BOC = 72°. Calcular la medida del ángulo formado por las bisectrices de AOB y COD. a) 120° b) 126° c) 130° d) 132° e) 135° 2. Hallar “x”. Si OB es bisectriz del ángulo AOC. a) 20° b) 10° c) 12° d) 14° e) 30° 3. Se tienen los ángulos adyacentes AOˆ B y BOˆ C que se diferencian en 48°. Calcular la medida del ángulo formado por la bisectriz del ángulo AOC y el rayo OB a) 48° b) 24° c) 18° d) 12° e) 6° 4. Se tienen los ángulos consecutivos AOˆ B, BOˆ C y C Oˆ D, tal que m AOC= BOD=90°. Hallar la medida del ángulo formado por las bisectrices de A Oˆ B y C Oˆ D. a) 80° b) 82° c) 85° d) 88° e) 90° 5. En la figura hallar m MOC. Si m BOC- m AOC = 40°. Además OM bisectriz del ángulo AOB. a) 12° b) 15° c) 18° d) 20° e) 36° 6. Dados los ángulos consecutivos A Oˆ B y B Oˆ C. Si m AOB + m AOC = 118° Hallar m AOM. Siendo OM la bisectriz de BOˆ C. a) 59° b) 28° c) 36° d) 46° e) 48° 7. SI m BOD = 120°. Hallar la medida del ángulo formado por las bisectrices de A Oˆ B y C Oˆ D. a) 90° b) 100° c) 110° d) 120° e) 105° 8. Hallar m MON. Si m AOC=120° y OM es bisectriz de AOB. a) 30° b) 40° c) 45° d) 20° e) 60° 9. En la figura. Calcular “x” a) 10° b) 15° c) 20° d) 25° e) 30°
  • 3. 10. En la figura, calcular la m BOD. Si m AOC = 100° y m XOY = 80° a) 50° b) 90° c) 70° d) 60° e) 120° 11. Hallar la medida del ángulo formado por las bisectrices de A Oˆ B y B Oˆ C. a) 30° b) 60° c) 45° d) 37° e) 53° 12. En la figura calcular “x” a) 20° b) 10° c) 12° d) 15° e) 18° 13. En la figura calcular la medida del ángulo formado por las bisectrices de los ángulos AOB y COD. a) 150° b) 115° c) 105° d) 125° e) 135° 14. Se tienen los ángulos adyacentes AOB y BOC tal que m AOB = 40°. Calcular la medida del ángulo que forman las bisectrices de los ángulos AOC y BOC. a) 20° b) 40° c) 30° d) 25° e) 10° 15. Se tienen los ángulos adyacentes AOB y BOC de modo que m AOB - m BOC = 48°. Luego se trazan las bisectrices OM del AOB, ON del BOC y OS del MON. Calcular la m SOB. a) 48° b) 32° c) 18° d) 24° e) 12° 16. Calcular la medida de un ángulo sabiendo que el Suplemento del Complemento de su medida es igual al séxtuplo de la misma medida. a) 12° b) 15° c) 18° d) 20° e) 30°