SlideShare una empresa de Scribd logo
La integral definida. Definición:
Dada f(x) una función continua y positiva en el intervalo [a,b]. Se define la integral
definida, en el intervalo [a,b], como el área limitada por las rectas x=a, x=b, el eje
OX y la gráfica de f(x) y se nota
Si f(x) es una función continua y negativa en el intervalo [a,b] entonces se define la
integral definida, en el intervalo [a,b], como el valor del área limitada por las rectas
x=a, x=b, el eje OX y la gráfica de f(x), cambiado de signo.
La integral definida. Propiedades:
Dada f(x) una función continua y positiva en el intervalo [a ,b]. Entonces se tiene:
i.
ii. Si f(x) es integrable en el intervalo [a,b] y c [a,b] entonces
iii. Si f y g son dos funciones integrables en [a,b] entonces
Métodos de Integración Aproximada
 Método del trapecio
Para calcular la integral definida, aplicando el Teorema Fundamental del
Cálculo, es preciso obtener previamente una integral indefinida. Aunque se
conocen diversos métodos para hallar la integral indefinida de una cantidad
considerable de funciones, existen funciones para las cuales estos métodos
no son aplicables. Este inconveniente se supera haciendo uso de la
integración numérica. La integración numérica permite evaluar la integral
definida de una función continua en un intervalo cerrado con la exactitud
deseada. En este apartado vamos a estudiar dos métodos de integración
numérica: la Regla del trapecio.
Este es un método de integración numérico que se obtiene al integrar
la formula de interpolación lineal.ico
[ ] Ef(b)f(a)
2
ab
f(x)dxI
b
a
++
−
≈= ∫ Respuesta, (error).
Él área sombreada por debajo de la recta de interpolación la llamaremos
g(x) es igual a la integral calculada mediante la regla del trapecio, mientras
que el área por debajo de la curva f(x) es el valor exacto.
Él error de la ecuación es igual al área entre g(x) y f(x).
Esta misma ecuación se puede extender a varios intervalos y se puede
aplicar N veces al caso de N intervalos con una separación uniforme h.
Regla del
trapecio
Así se propone la regla extendida del trapecio.
[ ]
f(b)fjh),f(ayfh),(aff(a),dondef
Ef2f...........2f2ff
2
h
I
N
a)(b
h
Nj10
N1N210
=+=+==
++++++=
−
=
+





+++≈=
−
−
=
∑∫ Ef(b)jh)f(a2f(a)
2
h
f(x)dxI
1N
1j
b
a
Tomando el siguiente calcularemos el área y luego utilizaremos el Método
del Trapecio.
*Hallar el área limitada por la recta x + y = 10, el eje X y las ordenadas de
x= 2 y x = 8
Despejamos la función: entonces nos vas a quedar y= 10-x.
Luego graficamos
Una vez realizado el mismo integramos para los extremos 2 y 8
Luego aplicamos el método del trapecio:
∫ =−
8
2
)10( Tndxx n=5
8
8.6
6.5
4.4
2.3
2
5
4
3
2
1
0
=
=
=
=
=
=
x
x
x
x
x
x
5
3
2
5
6
5
6
5
28
2
===
−
=
−
=
∆
n
abx
3/5 (10-2)+2(10-3.2)+2(10-4.4)+2(10-5.6)+2(10-6.8)+(10-8) =
8+ 13.6+11.2+8.8+6.4+2 3/5= 30 2
u
 Sólidos de Revolución
Definición: Si una gráfica de una función continua f(x) en el intervalo [a,b]
se hace girar sobre el eje x, a la superficie bajo la curva se le denomina
“área generatriz”, a la superficie delimitada por f(x) al girar se le llama
“superficie de revolución” y al volumen delimitado por la superficie de
revolución se le llama “sólido de revolución”. La rotación no necesariamente
se debe de efectuar sobre el eje x, pero sin pérdida de generalidad el eje
siempre se puede ubicar en esa posición.
 Volumen de un sólido de revolución (método de los discos):
El volumen de un sólido generado alrededor del eje x la región bajo la curva
de f(x) en el intervalo [a,b] en que f(x) es continua es:
El “disco” señalado en azul en la figura tiene radio f(x) de ahí empleando el
área del círculo se obtiene la expresión previa.
Si el volumen se genera por una superficie entre curvas, se generaliza el
método de los discos y se le denomina método de las arandelas , en este
caso si f(x)≥g(x) en [a,b] limitan la superficie, se tiene:
 Volumen de un sólido de revolución (método de lo tubos o casquillos
cilíndricos):
El sólido de revolución generado por una función f(x) que gira alrededor del
eje y, limitado por las rectas x = a y x = b, el eje x y la gráfica de f(x),
tiene un volumen:
En la figura se observa –en azul– un tubo típico de radio x, espesor dx y
altura f(x), que puede ser convertido en una lámina rectangular de
superficie 2πxf(x) y espesor dx.
Ejemplo:
• Encontrar el volumen del sólido obtenido al hacer girar la región
limitada por
Al hacer girar la figura sobre el eje Y, podemos "cortar" discos de altura
y el radio sería , entonces:
Al tener esto podemos ver que para encontrar el volumen del disco es lo
mismo que obtener el volumen a un cilindro.
Entonces:
Con esto tenemos el volumen de un disco, y para encontrar el volumen total
para n-discos:
Para optimizar hacemos que sea más grande, haciéndola tender al infinito:
Con esto tenemos la forma de la integral de Riemann variando de 0 a 8.
Resolviendo nos queda
Mediante el método de los cascarones cilíndricos:
Bibliografía:
 http://recursostic.educacion.es/descartes/web/materiales_didacticos/integral_defi
nida_ejff/primera.htm
 James Stewart CÁLCULO Transcentes Tempranas

Más contenido relacionado

La actualidad más candente

12 vector-normal-y-plano-tangente-2
12 vector-normal-y-plano-tangente-212 vector-normal-y-plano-tangente-2
12 vector-normal-y-plano-tangente-2
BradleyKevinCastillo
 
2bc14
2bc142bc14
Aplicación de las integrales
Aplicación de las integralesAplicación de las integrales
Aplicación de las integrales
Lois Copeland
 
Integral definida
Integral definidaIntegral definida
Integral definidalluisbo
 
Perimetros y areas de figuras planas
Perimetros y areas de figuras planasPerimetros y areas de figuras planas
Perimetros y areas de figuras planasEVAMASO
 
APLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma Quiroga
APLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma QuirogaAPLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma Quiroga
APLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma Quiroga
Norma Quiroga
 
Introduciòn a la integral definida
Introduciòn a la integral definidaIntroduciòn a la integral definida
Introduciòn a la integral definidajucapama
 
Area Bajo Una Curva
Area Bajo Una CurvaArea Bajo Una Curva
Area Bajo Una Curva
María Alicia Gemignani
 
Calculo de areas entre dos curvas
Calculo de areas entre dos curvasCalculo de areas entre dos curvas
Calculo de areas entre dos curvas
Antonio Flores Flores
 
Taller 3 calculo integral
Taller 3 calculo integralTaller 3 calculo integral
Taller 3 calculo integralgiomaraster123
 
Formulas Para El Calculo De Areas
Formulas Para El Calculo De AreasFormulas Para El Calculo De Areas
Formulas Para El Calculo De Areas
dianakatvm
 
Geometria y figuras
Geometria y figurasGeometria y figuras
Geometria y figurasmylend
 
Aplicaciones de la_integral definida
Aplicaciones de la_integral definidaAplicaciones de la_integral definida
Aplicaciones de la_integral definidaFabio Obando Herrera
 
Funciones trigonometricas
Funciones trigonometricasFunciones trigonometricas
Funciones trigonometricasLuis Elias
 
Área bajo la curva
Área bajo la curvaÁrea bajo la curva
Área bajo la curva
blackdiamond92
 
(Zeida) integral definida
(Zeida) integral definida(Zeida) integral definida
(Zeida) integral definidaLuizei
 
U3
U3U3
Unidad 7 iniciacion al calculo de derivadas
Unidad 7 iniciacion al calculo de derivadasUnidad 7 iniciacion al calculo de derivadas
Unidad 7 iniciacion al calculo de derivadasEva Espinosa
 

La actualidad más candente (20)

Integral definida 01_2014
Integral definida 01_2014Integral definida 01_2014
Integral definida 01_2014
 
12 vector-normal-y-plano-tangente-2
12 vector-normal-y-plano-tangente-212 vector-normal-y-plano-tangente-2
12 vector-normal-y-plano-tangente-2
 
2bc14
2bc142bc14
2bc14
 
Aplicación de las integrales
Aplicación de las integralesAplicación de las integrales
Aplicación de las integrales
 
Integral definida
Integral definidaIntegral definida
Integral definida
 
Integral definida
Integral definidaIntegral definida
Integral definida
 
Perimetros y areas de figuras planas
Perimetros y areas de figuras planasPerimetros y areas de figuras planas
Perimetros y areas de figuras planas
 
APLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma Quiroga
APLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma QuirogaAPLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma Quiroga
APLICACIONES DE LA INTEGRAL DEFINIDA - Ing. Norma Quiroga
 
Introduciòn a la integral definida
Introduciòn a la integral definidaIntroduciòn a la integral definida
Introduciòn a la integral definida
 
Area Bajo Una Curva
Area Bajo Una CurvaArea Bajo Una Curva
Area Bajo Una Curva
 
Calculo de areas entre dos curvas
Calculo de areas entre dos curvasCalculo de areas entre dos curvas
Calculo de areas entre dos curvas
 
Taller 3 calculo integral
Taller 3 calculo integralTaller 3 calculo integral
Taller 3 calculo integral
 
Formulas Para El Calculo De Areas
Formulas Para El Calculo De AreasFormulas Para El Calculo De Areas
Formulas Para El Calculo De Areas
 
Geometria y figuras
Geometria y figurasGeometria y figuras
Geometria y figuras
 
Aplicaciones de la_integral definida
Aplicaciones de la_integral definidaAplicaciones de la_integral definida
Aplicaciones de la_integral definida
 
Funciones trigonometricas
Funciones trigonometricasFunciones trigonometricas
Funciones trigonometricas
 
Área bajo la curva
Área bajo la curvaÁrea bajo la curva
Área bajo la curva
 
(Zeida) integral definida
(Zeida) integral definida(Zeida) integral definida
(Zeida) integral definida
 
U3
U3U3
U3
 
Unidad 7 iniciacion al calculo de derivadas
Unidad 7 iniciacion al calculo de derivadasUnidad 7 iniciacion al calculo de derivadas
Unidad 7 iniciacion al calculo de derivadas
 

Destacado

Hoy
HoyHoy
Calculo numerico docx
Calculo numerico docxCalculo numerico docx
Calculo numerico docxFremy Guedez
 
RTPSM
RTPSMRTPSM
RTPSM
Tensor
 
integracion grafica por trapecios
integracion grafica por trapeciosintegracion grafica por trapecios
integracion grafica por trapecios
Adbeel Mibsam Orozco Godoy
 
Diferenciación numérica trapecio
Diferenciación numérica trapecioDiferenciación numérica trapecio
Diferenciación numérica trapecioAndres Milquez
 
Software de Aplicación Integracion Numerica
Software de Aplicación Integracion NumericaSoftware de Aplicación Integracion Numerica
Software de Aplicación Integracion Numerica
keinervilla
 
Investigacion Expositiva
Investigacion ExpositivaInvestigacion Expositiva
Investigacion Expositiva
Marco Antonio Silva Gonzalez
 
Metodo trapezoidal para exponer
Metodo trapezoidal para exponer Metodo trapezoidal para exponer
Metodo trapezoidal para exponer
wilder_18_37
 
Metodos numericos
Metodos numericosMetodos numericos
Metodos numericosLilly Kwang
 
Regla del trapecio
Regla del trapecioRegla del trapecio
Regla del trapecio
Gabo Lancheros
 
2011 04 ecosistemas software de soporte a la integración continua
2011 04 ecosistemas software de soporte a la integración continua2011 04 ecosistemas software de soporte a la integración continua
2011 04 ecosistemas software de soporte a la integración continua
Juan José Guerra Martín
 
Trabajo del trapecio en diapositivas
Trabajo del trapecio en diapositivas Trabajo del trapecio en diapositivas
Trabajo del trapecio en diapositivas
Juliño Restrepo
 
Presentaciã³n metodos numericos
  Presentaciã³n metodos numericos  Presentaciã³n metodos numericos
Presentaciã³n metodos numericos
Veronica Villasana
 
Clase 5 - Muñeca y Mano
Clase 5 - Muñeca y ManoClase 5 - Muñeca y Mano
Método del trapecio
Método del trapecioMétodo del trapecio
Método del trapecio
icaicedo33
 
Integracion numerica trapecio
Integracion numerica trapecioIntegracion numerica trapecio
Integracion numerica trapecio
mat7731
 
Exposicion cap 7
Exposicion cap 7Exposicion cap 7
Exposicion cap 7cyndy
 
Aplicacion A La Ingenieria Civil De La Regla Trapeziodal Y Simpson
Aplicacion A La Ingenieria Civil De La Regla Trapeziodal Y SimpsonAplicacion A La Ingenieria Civil De La Regla Trapeziodal Y Simpson
Aplicacion A La Ingenieria Civil De La Regla Trapeziodal Y Simpson
emerdavid
 

Destacado (20)

Hoy
HoyHoy
Hoy
 
Calculo numerico docx
Calculo numerico docxCalculo numerico docx
Calculo numerico docx
 
RTPSM
RTPSMRTPSM
RTPSM
 
integracion grafica por trapecios
integracion grafica por trapeciosintegracion grafica por trapecios
integracion grafica por trapecios
 
Diferenciación numérica trapecio
Diferenciación numérica trapecioDiferenciación numérica trapecio
Diferenciación numérica trapecio
 
Software de Aplicación Integracion Numerica
Software de Aplicación Integracion NumericaSoftware de Aplicación Integracion Numerica
Software de Aplicación Integracion Numerica
 
Investigacion Expositiva
Investigacion ExpositivaInvestigacion Expositiva
Investigacion Expositiva
 
Metodo trapezoidal para exponer
Metodo trapezoidal para exponer Metodo trapezoidal para exponer
Metodo trapezoidal para exponer
 
Metodos numericos
Metodos numericosMetodos numericos
Metodos numericos
 
Regla del trapecio
Regla del trapecioRegla del trapecio
Regla del trapecio
 
4.2.1
4.2.14.2.1
4.2.1
 
2011 04 ecosistemas software de soporte a la integración continua
2011 04 ecosistemas software de soporte a la integración continua2011 04 ecosistemas software de soporte a la integración continua
2011 04 ecosistemas software de soporte a la integración continua
 
Trabajo del trapecio en diapositivas
Trabajo del trapecio en diapositivas Trabajo del trapecio en diapositivas
Trabajo del trapecio en diapositivas
 
Presentaciã³n metodos numericos
  Presentaciã³n metodos numericos  Presentaciã³n metodos numericos
Presentaciã³n metodos numericos
 
Clase 5 - Muñeca y Mano
Clase 5 - Muñeca y ManoClase 5 - Muñeca y Mano
Clase 5 - Muñeca y Mano
 
Método del trapecio
Método del trapecioMétodo del trapecio
Método del trapecio
 
DERIVACIÓN E INTEGRACIÓN NUMÉRICA
DERIVACIÓN E INTEGRACIÓN NUMÉRICADERIVACIÓN E INTEGRACIÓN NUMÉRICA
DERIVACIÓN E INTEGRACIÓN NUMÉRICA
 
Integracion numerica trapecio
Integracion numerica trapecioIntegracion numerica trapecio
Integracion numerica trapecio
 
Exposicion cap 7
Exposicion cap 7Exposicion cap 7
Exposicion cap 7
 
Aplicacion A La Ingenieria Civil De La Regla Trapeziodal Y Simpson
Aplicacion A La Ingenieria Civil De La Regla Trapeziodal Y SimpsonAplicacion A La Ingenieria Civil De La Regla Trapeziodal Y Simpson
Aplicacion A La Ingenieria Civil De La Regla Trapeziodal Y Simpson
 

Similar a Taller 1

Aplicaciones de la integral definida. javier david
Aplicaciones de la integral definida. javier davidAplicaciones de la integral definida. javier david
Aplicaciones de la integral definida. javier david
Javier Pereira
 
Unidad 3 calculo integral
Unidad 3 calculo integralUnidad 3 calculo integral
Unidad 3 calculo integral
wilian_ramos_perez
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdf
JorgeRojas278373
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdf
JorgeRojas278373
 
Aplicación de la integral definida
Aplicación de la integral definidaAplicación de la integral definida
Aplicación de la integral definida
Assunta Damelio
 
Elias hidalgo
Elias hidalgoElias hidalgo
Elias hidalgo
eliashidalgo
 
Aplicaciones de la_integral
Aplicaciones de la_integralAplicaciones de la_integral
Aplicaciones de la_integral
Lujan Victor
 
Slide share integrales definidas
Slide share integrales definidasSlide share integrales definidas
Slide share integrales definidas
julianberrios2
 
Matematica
MatematicaMatematica
Matematica
camilofigueroa14
 
Integral definida (MATERIA SAIA)
Integral definida (MATERIA SAIA)Integral definida (MATERIA SAIA)
Integral definida (MATERIA SAIA)
MiguelGarrido36
 
Integral definida
Integral definidaIntegral definida
Integral definida
Dulce Nombre Lendínez
 
Integral definida
Integral definidaIntegral definida
Integral definida
penemalo
 
Integrales definidas
Integrales definidasIntegrales definidas
Integrales definidas
MarianoHernandez27
 
Equipo1 teorema existencia y def. integral defin.
Equipo1 teorema existencia y def. integral defin.Equipo1 teorema existencia y def. integral defin.
Equipo1 teorema existencia y def. integral defin.casilala2
 
Jean michael uft slideshare
Jean michael uft slideshareJean michael uft slideshare
Jean michael uft slidesharejeanmichael17
 
Integrales definidas
Integrales definidasIntegrales definidas
Integrales definidas
FrancisMarcano6
 

Similar a Taller 1 (20)

Aplicaciones de la integral definida. javier david
Aplicaciones de la integral definida. javier davidAplicaciones de la integral definida. javier david
Aplicaciones de la integral definida. javier david
 
Unidad 3 calculo integral
Unidad 3 calculo integralUnidad 3 calculo integral
Unidad 3 calculo integral
 
Taller 1
Taller 1Taller 1
Taller 1
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdf
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdf
 
Aplicación de la integral definida
Aplicación de la integral definidaAplicación de la integral definida
Aplicación de la integral definida
 
Elias hidalgo
Elias hidalgoElias hidalgo
Elias hidalgo
 
Aplicaciones de la_integral
Aplicaciones de la_integralAplicaciones de la_integral
Aplicaciones de la_integral
 
Slide share integrales definidas
Slide share integrales definidasSlide share integrales definidas
Slide share integrales definidas
 
La integral definida
La integral definidaLa integral definida
La integral definida
 
Matematica
MatematicaMatematica
Matematica
 
Integral definida
Integral definidaIntegral definida
Integral definida
 
La integral definida
La integral definidaLa integral definida
La integral definida
 
Integral definida (MATERIA SAIA)
Integral definida (MATERIA SAIA)Integral definida (MATERIA SAIA)
Integral definida (MATERIA SAIA)
 
Integral definida
Integral definidaIntegral definida
Integral definida
 
Integral definida
Integral definidaIntegral definida
Integral definida
 
Integrales definidas
Integrales definidasIntegrales definidas
Integrales definidas
 
Equipo1 teorema existencia y def. integral defin.
Equipo1 teorema existencia y def. integral defin.Equipo1 teorema existencia y def. integral defin.
Equipo1 teorema existencia y def. integral defin.
 
Jean michael uft slideshare
Jean michael uft slideshareJean michael uft slideshare
Jean michael uft slideshare
 
Integrales definidas
Integrales definidasIntegrales definidas
Integrales definidas
 

Más de Juan Carlos Driutti Pumhoesl (20)

Webquest
WebquestWebquest
Webquest
 
Webquest
WebquestWebquest
Webquest
 
Webquest
WebquestWebquest
Webquest
 
Valentín
ValentínValentín
Valentín
 
Valentín
ValentínValentín
Valentín
 
Webquest
WebquestWebquest
Webquest
 
Proyecto
ProyectoProyecto
Proyecto
 
Proyecto
ProyectoProyecto
Proyecto
 
Identidades
IdentidadesIdentidades
Identidades
 
Tutorial
TutorialTutorial
Tutorial
 
Pinacograma
PinacogramaPinacograma
Pinacograma
 
Power point dde computacion 2
Power point dde computacion 2Power point dde computacion 2
Power point dde computacion 2
 
Proyecto temático
Proyecto temáticoProyecto temático
Proyecto temático
 
Webquest
WebquestWebquest
Webquest
 
Proyecto temático
Proyecto temáticoProyecto temático
Proyecto temático
 
Trabajo práctico nº 3
Trabajo práctico nº 3Trabajo práctico nº 3
Trabajo práctico nº 3
 
Trabajo práctico nº2
Trabajo práctico nº2Trabajo práctico nº2
Trabajo práctico nº2
 
Trabajo número 1
Trabajo número 1Trabajo número 1
Trabajo número 1
 
T.p.0
T.p.0T.p.0
T.p.0
 
T.p.0
T.p.0T.p.0
T.p.0
 

Último

CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
Martín Ramírez
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
https://gramadal.wordpress.com/
 
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia leeevalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
MaribelGaitanRamosRa
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
TatianaVanessaAltami
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
jmorales40
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
pablomarin116
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
LorenaCovarrubias12
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
FelixCamachoGuzman
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
JAVIER SOLIS NOYOLA
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
nievesjiesc03
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 

Último (20)

CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia leeevalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 

Taller 1

  • 1. La integral definida. Definición: Dada f(x) una función continua y positiva en el intervalo [a,b]. Se define la integral definida, en el intervalo [a,b], como el área limitada por las rectas x=a, x=b, el eje OX y la gráfica de f(x) y se nota Si f(x) es una función continua y negativa en el intervalo [a,b] entonces se define la integral definida, en el intervalo [a,b], como el valor del área limitada por las rectas x=a, x=b, el eje OX y la gráfica de f(x), cambiado de signo. La integral definida. Propiedades: Dada f(x) una función continua y positiva en el intervalo [a ,b]. Entonces se tiene: i. ii. Si f(x) es integrable en el intervalo [a,b] y c [a,b] entonces iii. Si f y g son dos funciones integrables en [a,b] entonces Métodos de Integración Aproximada
  • 2.  Método del trapecio Para calcular la integral definida, aplicando el Teorema Fundamental del Cálculo, es preciso obtener previamente una integral indefinida. Aunque se conocen diversos métodos para hallar la integral indefinida de una cantidad considerable de funciones, existen funciones para las cuales estos métodos no son aplicables. Este inconveniente se supera haciendo uso de la integración numérica. La integración numérica permite evaluar la integral definida de una función continua en un intervalo cerrado con la exactitud deseada. En este apartado vamos a estudiar dos métodos de integración numérica: la Regla del trapecio. Este es un método de integración numérico que se obtiene al integrar la formula de interpolación lineal.ico [ ] Ef(b)f(a) 2 ab f(x)dxI b a ++ − ≈= ∫ Respuesta, (error). Él área sombreada por debajo de la recta de interpolación la llamaremos g(x) es igual a la integral calculada mediante la regla del trapecio, mientras que el área por debajo de la curva f(x) es el valor exacto. Él error de la ecuación es igual al área entre g(x) y f(x). Esta misma ecuación se puede extender a varios intervalos y se puede aplicar N veces al caso de N intervalos con una separación uniforme h. Regla del trapecio
  • 3. Así se propone la regla extendida del trapecio. [ ] f(b)fjh),f(ayfh),(aff(a),dondef Ef2f...........2f2ff 2 h I N a)(b h Nj10 N1N210 =+=+== ++++++= − = +      +++≈= − − = ∑∫ Ef(b)jh)f(a2f(a) 2 h f(x)dxI 1N 1j b a Tomando el siguiente calcularemos el área y luego utilizaremos el Método del Trapecio. *Hallar el área limitada por la recta x + y = 10, el eje X y las ordenadas de x= 2 y x = 8 Despejamos la función: entonces nos vas a quedar y= 10-x. Luego graficamos Una vez realizado el mismo integramos para los extremos 2 y 8 Luego aplicamos el método del trapecio:
  • 4. ∫ =− 8 2 )10( Tndxx n=5 8 8.6 6.5 4.4 2.3 2 5 4 3 2 1 0 = = = = = = x x x x x x 5 3 2 5 6 5 6 5 28 2 === − = − = ∆ n abx 3/5 (10-2)+2(10-3.2)+2(10-4.4)+2(10-5.6)+2(10-6.8)+(10-8) = 8+ 13.6+11.2+8.8+6.4+2 3/5= 30 2 u  Sólidos de Revolución Definición: Si una gráfica de una función continua f(x) en el intervalo [a,b] se hace girar sobre el eje x, a la superficie bajo la curva se le denomina “área generatriz”, a la superficie delimitada por f(x) al girar se le llama “superficie de revolución” y al volumen delimitado por la superficie de revolución se le llama “sólido de revolución”. La rotación no necesariamente se debe de efectuar sobre el eje x, pero sin pérdida de generalidad el eje siempre se puede ubicar en esa posición.  Volumen de un sólido de revolución (método de los discos): El volumen de un sólido generado alrededor del eje x la región bajo la curva de f(x) en el intervalo [a,b] en que f(x) es continua es:
  • 5. El “disco” señalado en azul en la figura tiene radio f(x) de ahí empleando el área del círculo se obtiene la expresión previa. Si el volumen se genera por una superficie entre curvas, se generaliza el método de los discos y se le denomina método de las arandelas , en este caso si f(x)≥g(x) en [a,b] limitan la superficie, se tiene:
  • 6.  Volumen de un sólido de revolución (método de lo tubos o casquillos cilíndricos): El sólido de revolución generado por una función f(x) que gira alrededor del eje y, limitado por las rectas x = a y x = b, el eje x y la gráfica de f(x), tiene un volumen: En la figura se observa –en azul– un tubo típico de radio x, espesor dx y altura f(x), que puede ser convertido en una lámina rectangular de superficie 2πxf(x) y espesor dx.
  • 7. Ejemplo: • Encontrar el volumen del sólido obtenido al hacer girar la región limitada por Al hacer girar la figura sobre el eje Y, podemos "cortar" discos de altura y el radio sería , entonces: Al tener esto podemos ver que para encontrar el volumen del disco es lo mismo que obtener el volumen a un cilindro. Entonces: Con esto tenemos el volumen de un disco, y para encontrar el volumen total para n-discos: Para optimizar hacemos que sea más grande, haciéndola tender al infinito: Con esto tenemos la forma de la integral de Riemann variando de 0 a 8. Resolviendo nos queda Mediante el método de los cascarones cilíndricos: