UEFSV

Es una forma de razonamiento deductivo que consta de
dos proposiciones como premisas y otra
como conclusión, siendo la última una inferencia
necesariamente deductiva de las otras dos.
La facultad que permite resolver problemas,
extraer conclusiones y aprender de manera
consciente de los hechos
Es cada una de las proposiciones anteriores a la
conclusión de un argumento. (Afirmaciones)
Es una proposición lógica final no una opinión
Es un producto lógico del pensamiento que se expresa
mediante el lenguaje, sea éste un lenguaje común o formalizado
¿Qué son los silogismos?
Es un argumento una secuencia finita de fórmulas, de las
cuales la última es designada como la conclusión
Es una prueba o razón para justificar
algo como verdadero o falso
Es una evaluación que realiza la mente entre
proposiciones.

 El silogismo consta de tres proposiciones. De las dos
primeras, la de mayor extensión se llama premisa mayor;
la de menor extensión, premisa menor; la tercera
proposición recibe el nombre de conclusión. En el
silogismo hay, como materia de las proposiciones, tres
términos llamados mayor, menor y medio.
 El término mayor es predicado de la conclusión, se
representa por P.
 El término menor es sujeto de la conclusión, se representa
por S.
 El término medio se repite en las premisas y no aparece en
la conclusión, se representa por M.
Estructura
Primera figura: El término medio es el sujeto de la premisa mayor y predicado
de la menor. Ejemplo:
Ningún cuerpo es espíritu,
toda estrella es cuerpo,
luego, ninguna estrella es espíritu.
Cuarta figura: El término medio es predicado de la mayor y sujeto de la menor.
Ejemplo:
Todos los perros son mamíferos,
todos los mamíferos son vertebrados,
luego, todos los perros son vertebrados.
Tercera figura: El término medio es el sujeto de las dos premisas.
Ejemplo:
Ningún ecuatoriano es italiano, todos
los ecuatorianos son americanos,
luego, algunos americanos no son italianos.
Segunda figura: El término medio es el predicado de las dos premisas.
Ejemplo:
Todo mármol es piedra,
alguna sustancia no es piedra,
luego, alguna sustancia no es mármol.
M P
Clasificación
Identidad
Nos permite
identificar los tres
términos unos con
otros.
Comparación
Pueden ser de
superioridad o
inferioridad
Inclusión
Cuando el primer
término está incluido
en el segundo, y el
segundo en el tercero.
Exclusión
Excluye, niega
Hipotéticos
Su premisa mayor es
hipotética, es decir, es
una condición.
Pedro es hermano de María,
María es hermana de Juan;
por lo tanto, Pedro es hermano de Juan.
Venezuela es más grande que Ecuador,
Ecuador es más grande que Haití; por lo
tanto, Venezuela es más grande que Haití.
Pomasqui está en Pichincha,
Pichincha en Ecuador;
por lo tanto, Pomasqui está en Ecuador.
Felipe estudia Filosofía,
en Yachay no estudian Filosofía,
Felipe no estudia en Yachay.
Si estudias, aprobarás el año.
Has estudiado,
por lo tanto, pasarás el año.
Tatiana es más pequeña que Luisa,
Luisa es más pequeña que María;
por lo tanto, Tatiana es más pequeña que María.

Definiciones
Argumentos
Semejanzas
Analogía
LógicaTipos
Antónimos
Elementos
Conjuntos
SinónimosGenero
Especies
Causa -
Efecto

Condiciones
Premisas
verdaderas
Semejanzas
entre 2
situaciones
Semejanza
significativa
para
conclusión
Conclusión en
términos de
posibilidades
Analogía lógica
Leche es a vaca
Lana es a oveja
Oveja es a rebaño como abeja es a colmena
Ejemplos:

Argumentos por analogías
Luis tuvo dolores abdominales, acidez, indigestión y vomito. El medico le
receto tomar antiácidos después de diagnosticarle una ulcera gástrica.
Carlos tuvo dolores abdominales, acidez, indigestión y vomito. Luis le
recomendó los mismos antiácidos que le receto el medico. Pero lo que
tenia Carlos era cálculos a la vesícula. La recomendación de Luis casi lo
mata.
Premisa1 Luis tuvo dolores abdominales, acidez, indigestión y vomito
Premisa2 Carlos tuvo dolores abdominales, acidez, indigestión y vomito
Analogías - Ulcera gástrica - Cálculos a la vesícula

Validez o Invalidez
Como algún # par es
divisible por 8 y algún #
primo es # par, entonces
algún # primo es divisible
por 8
p algún # par es divisible por 8
q algún # primo es # par
r Por tanto, algún # primo es divisible por 8
p ^ q → r
Invalidez

Refutar
Consiste en refutar un argumento
mostrando que sus premisas no apoyan
la conclusión que se pretenden sostener,
sin necesidad de demostrar que una de
sus premisas es falsa o equivocada
Número par Genero
Divisible por 8 Masculino
Número primo Femenino
p algún # par es divisible por 8
q algún # primo es # par
r Por lo tanto, algún # primo es divisible por 8
Algún genero es masculino
Algún femenino es genero
Por tanto, algún femenino es masculino
PS
S P
El Juicio.
El juicio consiste en la atribución de
un predicado (P) a un sujeto (S). La
forma del juicio es: S es P.
Tipos:
A Universal afirmativo: "Todo S(+) es P(-)".
E Universal negativo: "Ningún S(+) es P(+)".
I Particular afirmativo: "Algún S(-) es P(-)".
O Particular negativo: "Algún S(-) no es P(+)".
S
P
S P
Todo hombre es mortal
Ningún hombre es mortal
Algún hombre es mortal
Algún hombre no es mortal
Términos distribuidos (+) (-)

Modos

Ejemplos
Variable Enunciado Juicio
P1 Algunos ecuatorianos hablan ingles I
P2 Todos los peruanos son ecuatorianos A
C Algunos peruanos hablan ingles I
Variable Enunciado Juicio
P1 Algunos gatos son mascotas I
P2 Algunas mascotas no son tigres O
C Algunos tigres son gatos I

Reglas del S2 al S6
Por su amable atención…
Mr. AG

Silogismos

  • 1.
  • 2.
     Es una formade razonamiento deductivo que consta de dos proposiciones como premisas y otra como conclusión, siendo la última una inferencia necesariamente deductiva de las otras dos. La facultad que permite resolver problemas, extraer conclusiones y aprender de manera consciente de los hechos Es cada una de las proposiciones anteriores a la conclusión de un argumento. (Afirmaciones) Es una proposición lógica final no una opinión Es un producto lógico del pensamiento que se expresa mediante el lenguaje, sea éste un lenguaje común o formalizado ¿Qué son los silogismos? Es un argumento una secuencia finita de fórmulas, de las cuales la última es designada como la conclusión Es una prueba o razón para justificar algo como verdadero o falso Es una evaluación que realiza la mente entre proposiciones.
  • 3.
      El silogismoconsta de tres proposiciones. De las dos primeras, la de mayor extensión se llama premisa mayor; la de menor extensión, premisa menor; la tercera proposición recibe el nombre de conclusión. En el silogismo hay, como materia de las proposiciones, tres términos llamados mayor, menor y medio.  El término mayor es predicado de la conclusión, se representa por P.  El término menor es sujeto de la conclusión, se representa por S.  El término medio se repite en las premisas y no aparece en la conclusión, se representa por M. Estructura
  • 4.
    Primera figura: Eltérmino medio es el sujeto de la premisa mayor y predicado de la menor. Ejemplo: Ningún cuerpo es espíritu, toda estrella es cuerpo, luego, ninguna estrella es espíritu. Cuarta figura: El término medio es predicado de la mayor y sujeto de la menor. Ejemplo: Todos los perros son mamíferos, todos los mamíferos son vertebrados, luego, todos los perros son vertebrados. Tercera figura: El término medio es el sujeto de las dos premisas. Ejemplo: Ningún ecuatoriano es italiano, todos los ecuatorianos son americanos, luego, algunos americanos no son italianos. Segunda figura: El término medio es el predicado de las dos premisas. Ejemplo: Todo mármol es piedra, alguna sustancia no es piedra, luego, alguna sustancia no es mármol. M P
  • 5.
    Clasificación Identidad Nos permite identificar lostres términos unos con otros. Comparación Pueden ser de superioridad o inferioridad Inclusión Cuando el primer término está incluido en el segundo, y el segundo en el tercero. Exclusión Excluye, niega Hipotéticos Su premisa mayor es hipotética, es decir, es una condición. Pedro es hermano de María, María es hermana de Juan; por lo tanto, Pedro es hermano de Juan. Venezuela es más grande que Ecuador, Ecuador es más grande que Haití; por lo tanto, Venezuela es más grande que Haití. Pomasqui está en Pichincha, Pichincha en Ecuador; por lo tanto, Pomasqui está en Ecuador. Felipe estudia Filosofía, en Yachay no estudian Filosofía, Felipe no estudia en Yachay. Si estudias, aprobarás el año. Has estudiado, por lo tanto, pasarás el año. Tatiana es más pequeña que Luisa, Luisa es más pequeña que María; por lo tanto, Tatiana es más pequeña que María.
  • 6.
  • 7.
     Condiciones Premisas verdaderas Semejanzas entre 2 situaciones Semejanza significativa para conclusión Conclusión en términosde posibilidades Analogía lógica Leche es a vaca Lana es a oveja Oveja es a rebaño como abeja es a colmena Ejemplos:
  • 8.
     Argumentos por analogías Luistuvo dolores abdominales, acidez, indigestión y vomito. El medico le receto tomar antiácidos después de diagnosticarle una ulcera gástrica. Carlos tuvo dolores abdominales, acidez, indigestión y vomito. Luis le recomendó los mismos antiácidos que le receto el medico. Pero lo que tenia Carlos era cálculos a la vesícula. La recomendación de Luis casi lo mata. Premisa1 Luis tuvo dolores abdominales, acidez, indigestión y vomito Premisa2 Carlos tuvo dolores abdominales, acidez, indigestión y vomito Analogías - Ulcera gástrica - Cálculos a la vesícula
  • 9.
     Validez o Invalidez Comoalgún # par es divisible por 8 y algún # primo es # par, entonces algún # primo es divisible por 8 p algún # par es divisible por 8 q algún # primo es # par r Por tanto, algún # primo es divisible por 8 p ^ q → r Invalidez
  • 10.
     Refutar Consiste en refutarun argumento mostrando que sus premisas no apoyan la conclusión que se pretenden sostener, sin necesidad de demostrar que una de sus premisas es falsa o equivocada Número par Genero Divisible por 8 Masculino Número primo Femenino p algún # par es divisible por 8 q algún # primo es # par r Por lo tanto, algún # primo es divisible por 8 Algún genero es masculino Algún femenino es genero Por tanto, algún femenino es masculino
  • 11.
    PS S P El Juicio. Eljuicio consiste en la atribución de un predicado (P) a un sujeto (S). La forma del juicio es: S es P. Tipos: A Universal afirmativo: "Todo S(+) es P(-)". E Universal negativo: "Ningún S(+) es P(+)". I Particular afirmativo: "Algún S(-) es P(-)". O Particular negativo: "Algún S(-) no es P(+)". S P S P Todo hombre es mortal Ningún hombre es mortal Algún hombre es mortal Algún hombre no es mortal Términos distribuidos (+) (-)
  • 12.
  • 13.
     Ejemplos Variable Enunciado Juicio P1Algunos ecuatorianos hablan ingles I P2 Todos los peruanos son ecuatorianos A C Algunos peruanos hablan ingles I Variable Enunciado Juicio P1 Algunos gatos son mascotas I P2 Algunas mascotas no son tigres O C Algunos tigres son gatos I
  • 14.
  • 15.
    Por su amableatención… Mr. AG