TRIGONOMETRÍA

   MATEMÁTICAS 4º ESO
LA IMPORTANCIA DE LA TRIGONOMETRÍA
   Trigonometría, etimológicamente, significa medida de
    triángulos.
   Conocidos dos lados de un triángulo rectángulo, aplicamos
    habitualmente el Teorema de Pitágoras para conocer el
    tercer lado.

                                  h2 = c12+c22
c1 = 3 cm             ¿h?
                                   h = 5 cm
              c2 = 4 cm
   Pero, ¿y si lo que conocemos es un lado y un ángulo?
           Por ejemplo, podemos medir el ángulo con el que
    avistamos una montaña. Luego medimos la distancia desde la
    que medimos ese ángulo y la base de la montaña. Con estos
    datos deseamos conocer la altura de la montaña. Aquí entra
    en juego la trigonometría.
APLICACIONES DE LA TRIGONOMETRÍA

   Altura de un edificio      Distancia a un punto
                                inaccesible




                                               … entre otras
   Cuando dos triángulos rectángulos son semejantes, es decir,
    cuando tienen sus ángulos iguales, sus lados guardan una
    relación de proporcionalidad.




               10 cm
    6 cm                                         y
                          18 cm
            8 cm



                                             x
RAZONES TRIGONOMÉTRICAS DE UN
TRIÁNGULO RECTÁNGULO
    Llamamos razones trigonométricas a las relaciones de
     proporcionalidad entre los lados de un triángulo rectángulo.
     Esas razones dependerán del ángulo.




                              hipotenusa
    cateto opuesto
                                       α

                     cateto contiguo
Ejercicios
   Calcula las razones trigonométricas del ángulo que se indica
    en la figura del siguiente triángulo rectángulo:
               10 cm
      6 cm

              8 cm
   Sabiendo que el siguiente triángulo rectángulo es semejante
    al   anterior,  calcula,    ayudándote    de   las  razones
    trigonométricas, los lados que faltan:



                         y
      18 cm


                     x
RAZONES TRIGONOMÉTRICAS DE
ÁNGULOS IMPORTANTES


         sen       cos       tan
45º



30º



60º
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO
CUALQUIERA:
LA CIRCUNFERENCIA GONIOMÉTRICA
Ejercicios
   Indica en qué cuadrante se encuentran los siguientes ángulos
    y el signo de sus razones trigonométricas:




    IMPORTANTE: El radián es una unidad de medida de ángulos que se define
    como el ángulo determinado por un arco de circunferencia cuya longitud
    coincide con el radio de dicha circunferencia.
    El factor de conversión de radianes a grados es:
RELACIONES ENTRE RAZONES
TRIGONOMÉTRICAS




 Ejercicios:

 Calcula las razones trigonométricas restantes:

         a)                   α∈ 1er cuadrante


         b)                   α∈ 4o cuadrante

         c)                   α∈ 3er cuadrante
REDUCCIÓN DE LAS RAZONES
TRIGONOMÉTRICAS AL PRIMER CUADRANTE
Ángulos complementarios:   β = 90º – α
Trigonometría

Trigonometría

  • 1.
    TRIGONOMETRÍA MATEMÁTICAS 4º ESO
  • 2.
    LA IMPORTANCIA DELA TRIGONOMETRÍA  Trigonometría, etimológicamente, significa medida de triángulos.  Conocidos dos lados de un triángulo rectángulo, aplicamos habitualmente el Teorema de Pitágoras para conocer el tercer lado. h2 = c12+c22 c1 = 3 cm ¿h? h = 5 cm c2 = 4 cm  Pero, ¿y si lo que conocemos es un lado y un ángulo? Por ejemplo, podemos medir el ángulo con el que avistamos una montaña. Luego medimos la distancia desde la que medimos ese ángulo y la base de la montaña. Con estos datos deseamos conocer la altura de la montaña. Aquí entra en juego la trigonometría.
  • 3.
    APLICACIONES DE LATRIGONOMETRÍA  Altura de un edificio  Distancia a un punto inaccesible  … entre otras
  • 4.
    Cuando dos triángulos rectángulos son semejantes, es decir, cuando tienen sus ángulos iguales, sus lados guardan una relación de proporcionalidad. 10 cm 6 cm y 18 cm 8 cm x
  • 5.
    RAZONES TRIGONOMÉTRICAS DEUN TRIÁNGULO RECTÁNGULO  Llamamos razones trigonométricas a las relaciones de proporcionalidad entre los lados de un triángulo rectángulo. Esas razones dependerán del ángulo. hipotenusa cateto opuesto α cateto contiguo
  • 6.
    Ejercicios  Calcula las razones trigonométricas del ángulo que se indica en la figura del siguiente triángulo rectángulo: 10 cm 6 cm 8 cm  Sabiendo que el siguiente triángulo rectángulo es semejante al anterior, calcula, ayudándote de las razones trigonométricas, los lados que faltan: y 18 cm x
  • 7.
    RAZONES TRIGONOMÉTRICAS DE ÁNGULOSIMPORTANTES sen cos tan 45º 30º 60º
  • 8.
    RAZONES TRIGONOMÉTRICAS DEUN ÁNGULO CUALQUIERA: LA CIRCUNFERENCIA GONIOMÉTRICA
  • 9.
    Ejercicios  Indica en qué cuadrante se encuentran los siguientes ángulos y el signo de sus razones trigonométricas: IMPORTANTE: El radián es una unidad de medida de ángulos que se define como el ángulo determinado por un arco de circunferencia cuya longitud coincide con el radio de dicha circunferencia. El factor de conversión de radianes a grados es:
  • 10.
    RELACIONES ENTRE RAZONES TRIGONOMÉTRICAS Ejercicios: Calcula las razones trigonométricas restantes: a) α∈ 1er cuadrante b) α∈ 4o cuadrante c) α∈ 3er cuadrante
  • 11.
    REDUCCIÓN DE LASRAZONES TRIGONOMÉTRICAS AL PRIMER CUADRANTE
  • 14.