SlideShare una empresa de Scribd logo
1 de 7
CONJUNTOS I
1. Si: A ;a; a ; a,b ;
Indicar las proposiciones que son
verdaderas.
I. a A {a, b} A
II. { } A { } A
III. A A
A) solo I B) solo II
C) solo III D) II y IV
E) II y III
RESOLUCIÓN
A ;a; a ; a,b ;
I. a A {a, b} A
F F = F
II. { } A { } A
F V = V
III. A A
V V = V
I y III son verdaderas
RPTA.: D
2. Dados los conjuntos:
A x N 2x 13
B x A x² 2x A
Indicar si es verdadero o falso, las
siguientes proposiciones.
I. x A / x² 5 > 4
II. x (A B) / 2x + 5 < 8
III. x (A B) / x² B
A) VVF B) FVF C) VFV
D) VFF E) VVV
RESOLUCIÓN
A x N 2x 13
A 0; 1; 2; 3; 4; 5; 6
B x A x² 2x A
x = 0; 1; 2; 3; 4; 5; 6
x² 2x = 0 ; 1; 0 ; 3 ; 8; 15; 24
B = {1; 4; 5; 6}
I. x A / x² 5 > 4
(V)
II. x (A B)/2x + 5 < 8
(F)
III. x (A B) / x² B
(V)
RPTA.: C
3. Sea A n Z n 600
Calcule la suma de elementos del
conjunto B; si
3
B a 2 a A a A
A) 1000 B) 1296 C) 1312
D) 1424 E) 1528
RESOLUCIÓN
3
a es cubo perfecto
A n Z n 600 1,2,3,4,5,...,600
B a 2 a A a A

a = 1³ ; 2³; 3³; ...; 8³
2
B 1³ 2 ; 2³ 2 ; 3³ 2 ;....; 8³ 2
elementos 8 x 9
2 8
2de B
1312

Nota: 3
2
N
n n 1
S
2
RPTA.: C
4. Halle el cardinal del conjunto B e
indicar el número de subconjuntos
ternarios que tiene.
CONJUNTOS
LÓGICA
B x Z x 8 x 2
siendo : p q p q A B 
A) 48 B) 42 C) 63
D) 56 E) 45
RESOLUCIÓN
B x Z x 8 x 2
(x > 8) (x = 2)
(x> 8) (x = 2)
x = 1; 2; 3; 4; 5; 6; 7; 8
n(B) = 8
#Subconjuntos 8 8!
C
3! 5!3Ternarios de B
6 x7x8
56
6
RPTA.: D
5. Dados los conjuntos unitarios
A = {a + b; a + 2b 3; 12} y
B = {xy
; yx
; 16};
halle el valor de (x + y + a² + b)
A) 81 B) 92 C) 96
D) 87 E) 90
RESOLUCIÓN
A y B son unitarios:
* A = {a + b; a + 2b 3; 12}
a + b = 12
a + 2b 3 = 12
a + 2b = 15
como: a + b = 12
b = 3 a = 9
* B = {xy
; yx
; 16}
xy
= yx
= 24
x = 2 ; y = 4
x + y + a² + b = 90
RPTA.: E
6. Calcular el número de subconjuntos
binaros del conjunto D, si:
D = {(x² 1) Z / 0 < x 4}
A) 132 B) 126 C) 105
D) 124 E) 120
RESOLUCIÓN
D = {(x² 1) Z / 0 < x 4}
0 < x 4 0 < x² 16
1 <x² 1 15
D = {0; 1; 2; 3; ...;15} n(D)= 16
#Subconjuntos 16 16!
C
2! 14!2Binarios de D
15x16
2
15x8
120
RPTA.: E
7. Si:
n [P(A)]= 128; n[P(B)]= 32 y
n [P(A B)] = 8
Halle el cardinal de P(A B) sumado
con el cardinal de:
C =
5
3x 1 Z x
3
A) 521 B) 517 C) 519
D) 512 E) 520
RESOLUCIÓN
´
* nP(A) = 128 = 27
n(A) = 7
nP(B) = 32 = 25
n(B) = 5
nP(A B) = 8 = 23
n(A B) = 3
n(A B) = 7 + 5 3 = 9
nP(A B) = 29
= 512
* C =
5
3x 1 Z x
3
5
x
3
5
x 3 1 3 1
3
 
(3x + 1) < 6
C = {1; 2; 3; 4; 5}
n(C) = 5
nP(A B) + n(C) = 517
RPTA.: B
8. Oscar compra 9 baldes de pinturas
de diferentes colores. Los mezcla en
igual proporción. ¿Cuántos nuevos
matices se pueden obtener?
A) 512 B) 246 C) 247
D) 503 E) 502
RESOLUCIÓN
# de colores = 9
# de nuevos matices= 29
1 9
= 512 10
= 502
RPTA.: E
9. El conjunto A tiene 200
subconjuntos no ternarios. ¿Cuántos
subconjuntos quinarios tendrá?
A) 64 B) 56 C) 48
D) 21 E) 35
RESOLUCIÓN
Sea n(A) = x
x x
3
x
x
Subconjuntos
2 C 200
no ternarios
x!
2 200
3! x 3
x 2 x 1 x
2 200
6
x 8
Luego :
#Subconjuntos 8 8!
C
5! x 3!5Quinarios
8 x 7 x 6
56
6
RPTA.: B
10. Si el conjunto “C” tiene (P + 1)
elementos y (2P + 3) subconjuntos
propios; además:
n(A) = 4P + 2 ; n(B) = 3P + 6 y
n(A B) = 2P 2
Halle n(A B)
A) 14 B) 16 C) 18
D) 17 E) 20
RESOLUCIÓN
n(C) = P + 1
# subconjuntos
2P 3
propios de C

P + 1
2P + 1
1 = 2P + 3
P = 2
Luego:
n(A) = 4(2) + 2 = 10
n(B) = 3(2) + 6 = 12
n(A B) = 2
n (A B) = 18
RPTA.: C
11. Sean los conjuntos A E ; B E y
C E; E conjunto universal, tal que:
E = {x Z+
/ x < 10}
A = x E x 7
A B = {x E / x 9 x > 2}
B C = {3}
B C = {x E / x 7}
A C = A B C
Determinar n(A) + n(B) + n(C)
A) 9 B) 12 C) 10
D) 13 E) 11
RESOLUCIÓN
E={x Z+
/x<10} = {1,2,3,4,5,6,7,8,9}
A x E / x 7 1,2,3,4,5,6
A = {7, 8, 9}
De:
A C A B C A B C
A B = {3, 4, 5, 6, 7, 8, 9}
B C = {1, 2, 3, 4, 5, 6, 7}
n(A) + n(B) + n(C) = 3 + 5 + 3 = 11
RPTA.: E
12. Sean A, B y C tres conjuntos no
vacíos que cumplen las condiciones:
* A B B A
* si x C x B
Determinar el valor de verdad de las
siguientes proposiciones.
I) A y B son disjuntos
II) (A B) C
III) C (A B)
IV) C (A B)
A) FVVF B) FFVV C) FFFF
D) VFVF E) FFFV
RESOLUCIÓN
A B B A
x C x B
Graficando las dos condiciones:
I) A y B son disjuntos (F)
II) (A B) C (F)
III) C (A B) (F)
IV) C (A B) (V)
RPTA.: E
13. Sean A y B dos conjuntos finitos
tales que:
* A B =
* n(B) = 2 . n(A)
* B tiene 128 subconjuntos.
´
´ ´ ´
´
1028
A = 10 B = 12
. 1
. 2. 3
. 4
. 5
. 6
. 7
. 8
. 9
C
BA
´
C
B
A
El número de subconjuntos de B
excede al número de subconjuntos
propios de A en 993.
¿Cuántos subconjuntos propios tiene
A ?
A) 28
1 B) 210
1 C) 211
1
D) 212
1 E) 213
1
RESOLUCIÓN
Sean n(A) = x n(B) = 2x
# subconjuntos # subconjuntos
993
de B propios de A
 
22x
(2x
1) = 993
2x
(2x
1) = 992 = 25
x 31
x = 5
Luego:
# subconjuntos de 7
B 128 2
12
#subconjuntos propios de A 2 1
RPTA.: D
14. Dados los conjuntos:
3x 5
A x N / N
4
x 1 x
B N / N
2 2
C x N / 2x 25
Halle: n[(A B) C ]
A) 2 B) 3 C) 4
D) 5 E) 6
RESOLUCIÓN
*
3x 5
A x N / N
4
3x 5 4N 5
N x
4 3
N = 2; 5; 8 ......
X = 1; 5; 9 ......
A = {1, 5, 9, 13, 17, 21, .....}
*
x 1 x
B N / N
2 2

NATURAL
x 1 x 1
No existe natural
2 2 2
B =
* C x N / 2x 25
C = {13, 14, 15, 16, 17, .....}
n(A B) C A B (DIFERENCIA SIMÉTRICA)
n (A C ) = n(A C)
= n {1, 5, 9}
= 3
RPTA.: B
15. Para los conjuntos A, B y C
afirmamos:
I. Si A B C C B A
II. A A
III. A B A B
IV. Si A B B A
V. A B A B A
Son verdaderas:
A) todas
B) solo II y III
C) todas excepto V
D) solo II, III, IV y V
E) solo I, II y V
RESOLUCIÓN
I. Si A B C C B A (V)
´
´ ´ ´´
´´
´ ´
´´
2
5 10
B = 10A = 5
U
´´´
´
II. A A (V)
III. A B A B (V)
IV. Si A B B A (V)
V. A B A B A (V)
RPTA.: A
16. Si A y B son dos conjuntos finitos,
tal que, el número de subconjuntos
de A y de B suman 320, los
conjuntos A y B tienen 2 elementos
comunes; determine n(A B)
A) 14 B) 13 C) 12
D) 11 E) 10
RESOLUCIÓN
320 = n(PA) + n (PB)
320 = 2n(A)
+ 2n(B)
320 = 26
+ 28
Luego:
n(A) = 6 n(B) = 8
n(A B) = 10
RPTA.: E
17. Sean A, B y C conjuntos no vacíos
diferentes dos a dos, tales que:
B A ; C B
A C
Al simplificar:
[B (C A)] [A (B C)] se
obtiene:
A) A B) B C) A B
D) A C E)
RESOLUCIÓN
B A ; C B ; A C
A B ; C B ; A C


Graficando y enumerando las
regiones:
B C A A B C
 
[2] [1; 3] =
RPTA.: E
18. Sean A y B dos conjuntos
cualesquiera, simplificar:
A B A B A B
A) A B B) A B
C) A B D) A B
E)
RESOLUCIÓN
Graficando los conjuntos A y B
A B A B A B
 
(A B) (B A)
´
´ ´ ´
´
´´
´´´
4 62
A B
2
B
C
A
1
2 3
´ ´ ´´
2 31
4
A B
´
´´
´ ´
´ ´
1,2,3 2,3
1,2,3 1,4 1 A B
RPTA.: A
19. En el gráfico, las zonas sombreadas
están representadas por:
I) [A (B C)] [C D]
II) (A B) (B C)
III) [(A D) C] [A (B C)]
A) solo I B) solo II
C) solo I y II D) solo II y III
E) todos
RESOLUCIÓN
I) [A (B C)] [C D]
[{1,2,3} {2,6,5}] {7} =
{1,3,7}: si
II) (A B) (B C)
{1,2,3,4,5,6,7} {2,5,6} =
{1,3,4,7} no
III) [(A D) C] [A (B C)]
{1,2,5} {1,3} = {1} no
RPTA.: A
20. Dado 3 conjuntos A; B y C:
Si n(A) = m ; n(B) = m + r
n(C) = m + 2r ; además:
n[P(A)] + n[P(B)]+ n[P(C)] = 896
Se sabe además que A, B y C son
disjuntos.
Calcule n(A B C)
A) 16 B) 22 C) 24
D) 32 E) 48
RESOLUCIÓN
n(A) = m ; n(B) = m + r ; n(C) = m + 2r
  A B C
nP nP nP 896
2m
+ 2m+r
+ 2m+2r
= 896
2m
[1 + 2r
+ 22r
] = 896 = 27
x 7
m = 7
r = 1
A B C
7 8 9
n(A B C) = 24
RPTA.: C
B
C
D
A
´
B
C
D
A
1 2 3
4
5
6
7

Más contenido relacionado

La actualidad más candente

Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentesLeoncito Salvaje
 
Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016 Mery Lucy Flores M.
 
Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1
Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1
Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1Mery Lucy Flores M.
 
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1Mery Lucy Flores M.
 
Semana 6 PRE SAN MARCOS 2014 I
Semana 6 PRE SAN MARCOS 2014 ISemana 6 PRE SAN MARCOS 2014 I
Semana 6 PRE SAN MARCOS 2014 IKarlosHuman12
 
Algebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º GradoAlgebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º GradoCamilo Solis Yanac
 
Aduni
AduniAduni
AduniGREA
 
Solucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 i
Solucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 iSolucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 i
Solucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 iMery Lucy Flores M.
 
Razones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos iRazones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos iJUANCA
 
Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016 Mery Lucy Flores M.
 

La actualidad más candente (20)

Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentes
 
Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 10 Ciclo 2016
 
Algebra 10
Algebra 10Algebra 10
Algebra 10
 
Semana 5 2010 ii
Semana 5 2010 iiSemana 5 2010 ii
Semana 5 2010 ii
 
Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1
Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1
Solucionario CEPRE SAN MARCOS - semana 4 ciclo ordinario 2016-1
 
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
 
Semana 6 PRE SAN MARCOS 2014 I
Semana 6 PRE SAN MARCOS 2014 ISemana 6 PRE SAN MARCOS 2014 I
Semana 6 PRE SAN MARCOS 2014 I
 
Semana 09 2016 2
Semana 09 2016 2Semana 09 2016 2
Semana 09 2016 2
 
Solucion 7
Solucion 7Solucion 7
Solucion 7
 
Algebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º GradoAlgebra 4to...Ecuaciones e inecuaciones de 2º Grado
Algebra 4to...Ecuaciones e inecuaciones de 2º Grado
 
02 cinematica
02   cinematica02   cinematica
02 cinematica
 
Cinemetica
CinemeticaCinemetica
Cinemetica
 
Solucionario UNAC 2013-ii
Solucionario UNAC  2013-iiSolucionario UNAC  2013-ii
Solucionario UNAC 2013-ii
 
Aduni
AduniAduni
Aduni
 
Solucionario semana 2 (2)
Solucionario semana 2 (2)Solucionario semana 2 (2)
Solucionario semana 2 (2)
 
Resolucion de triangulos rectangulos i
Resolucion de triangulos rectangulos iResolucion de triangulos rectangulos i
Resolucion de triangulos rectangulos i
 
Solucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 i
Solucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 iSolucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 i
Solucionario CEPRE SAN MARCOS - Semana 3 Ciclo 2016 i
 
Razones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos iRazones trigonométricas de ángulos agudos i
Razones trigonométricas de ángulos agudos i
 
Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 13 Ciclo 2016
 
2010 i semana 13
2010   i semana 132010   i semana 13
2010 i semana 13
 

Destacado

Aritmetica 4° 3 b
Aritmetica 4° 3 bAritmetica 4° 3 b
Aritmetica 4° 3 b349juan
 
Ejercicios resueltos de conjuntos
Ejercicios resueltos de conjuntosEjercicios resueltos de conjuntos
Ejercicios resueltos de conjuntoshernancarrilloa
 
LÓGICA Y CONJUNTOS
LÓGICA Y CONJUNTOSLÓGICA Y CONJUNTOS
LÓGICA Y CONJUNTOSJose Ojeda
 
Un problema sobre conjuntos
Un problema sobre conjuntosUn problema sobre conjuntos
Un problema sobre conjuntosHespinoza
 
Productos notables
Productos notablesProductos notables
Productos notablesJUANCA
 
Teoremas geometricos
Teoremas geometricosTeoremas geometricos
Teoremas geometricosJUANCA
 
5 to modulo 8 razones trigonometricas iii
5 to modulo 8   razones trigonometricas iii5 to modulo 8   razones trigonometricas iii
5 to modulo 8 razones trigonometricas iiiDanzas Folkloricas
 
Sistemas de medida angular
Sistemas de medida angularSistemas de medida angular
Sistemas de medida angularJUANCA
 
Mapa conceptual de operaciones basicas
Mapa conceptual de operaciones basicasMapa conceptual de operaciones basicas
Mapa conceptual de operaciones basicastabiinc
 
Ecuacionestrigono
EcuacionestrigonoEcuacionestrigono
Ecuacionestrigonorjaimeramos
 
RELACIONES TRIGONOMÉTRICAS
RELACIONES TRIGONOMÉTRICASRELACIONES TRIGONOMÉTRICAS
RELACIONES TRIGONOMÉTRICASjorge la chira
 
Circunferencia trigonométrica
Circunferencia trigonométricaCircunferencia trigonométrica
Circunferencia trigonométricaJUANCA
 
FUNCIONES TRIGONOMETRICAS
FUNCIONES TRIGONOMETRICASFUNCIONES TRIGONOMETRICAS
FUNCIONES TRIGONOMETRICASCESAR COAQUIRA
 
Semana 1 razonamiento logico i
Semana 1   razonamiento logico iSemana 1   razonamiento logico i
Semana 1 razonamiento logico iEspinoza Erick
 

Destacado (20)

Aritmetica 4° 3 b
Aritmetica 4° 3 bAritmetica 4° 3 b
Aritmetica 4° 3 b
 
Conjunto ejercicios-y-teoria
Conjunto ejercicios-y-teoriaConjunto ejercicios-y-teoria
Conjunto ejercicios-y-teoria
 
Ejercicios resueltos de conjuntos
Ejercicios resueltos de conjuntosEjercicios resueltos de conjuntos
Ejercicios resueltos de conjuntos
 
TeoríA de Conjuntos
TeoríA de ConjuntosTeoríA de Conjuntos
TeoríA de Conjuntos
 
LÓGICA Y CONJUNTOS
LÓGICA Y CONJUNTOSLÓGICA Y CONJUNTOS
LÓGICA Y CONJUNTOS
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Un problema sobre conjuntos
Un problema sobre conjuntosUn problema sobre conjuntos
Un problema sobre conjuntos
 
Semana 1 cs
Semana 1 csSemana 1 cs
Semana 1 cs
 
office, numeros irracionales
office, numeros irracionalesoffice, numeros irracionales
office, numeros irracionales
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Logica de predicados
Logica de predicadosLogica de predicados
Logica de predicados
 
Teoremas geometricos
Teoremas geometricosTeoremas geometricos
Teoremas geometricos
 
5 to modulo 8 razones trigonometricas iii
5 to modulo 8   razones trigonometricas iii5 to modulo 8   razones trigonometricas iii
5 to modulo 8 razones trigonometricas iii
 
Sistemas de medida angular
Sistemas de medida angularSistemas de medida angular
Sistemas de medida angular
 
Mapa conceptual de operaciones basicas
Mapa conceptual de operaciones basicasMapa conceptual de operaciones basicas
Mapa conceptual de operaciones basicas
 
Ecuacionestrigono
EcuacionestrigonoEcuacionestrigono
Ecuacionestrigono
 
RELACIONES TRIGONOMÉTRICAS
RELACIONES TRIGONOMÉTRICASRELACIONES TRIGONOMÉTRICAS
RELACIONES TRIGONOMÉTRICAS
 
Circunferencia trigonométrica
Circunferencia trigonométricaCircunferencia trigonométrica
Circunferencia trigonométrica
 
FUNCIONES TRIGONOMETRICAS
FUNCIONES TRIGONOMETRICASFUNCIONES TRIGONOMETRICAS
FUNCIONES TRIGONOMETRICAS
 
Semana 1 razonamiento logico i
Semana 1   razonamiento logico iSemana 1   razonamiento logico i
Semana 1 razonamiento logico i
 

Similar a Conjuntos i

Aritmetica san marco
Aritmetica san marcoAritmetica san marco
Aritmetica san marcoVictor Manuel
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)George Montenegro
 
Examen Cepreuni
Examen CepreuniExamen Cepreuni
Examen CepreuniJaneCh9
 
Cuatro operaciones aritméticas
Cuatro operaciones aritméticasCuatro operaciones aritméticas
Cuatro operaciones aritméticasJUANCA
 
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdfCUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdfELNAZARENOIEP
 
Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)Omar Rodriguez Garcia
 

Similar a Conjuntos i (20)

Aritmetica san marco
Aritmetica san marcoAritmetica san marco
Aritmetica san marco
 
ejercicios cepre.pdf
ejercicios cepre.pdfejercicios cepre.pdf
ejercicios cepre.pdf
 
Ab1 2016 x_01
Ab1 2016 x_01Ab1 2016 x_01
Ab1 2016 x_01
 
Ab1 2016 x_01
Ab1 2016 x_01Ab1 2016 x_01
Ab1 2016 x_01
 
OLIMPAMER - TROMPETEROS
OLIMPAMER - TROMPETEROSOLIMPAMER - TROMPETEROS
OLIMPAMER - TROMPETEROS
 
ARITMÉTICA
ARITMÉTICAARITMÉTICA
ARITMÉTICA
 
Practica de conjuntos
Practica de conjuntosPractica de conjuntos
Practica de conjuntos
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
 
Solucion pd2 operaciones con conjuntos
Solucion pd2   operaciones con conjuntosSolucion pd2   operaciones con conjuntos
Solucion pd2 operaciones con conjuntos
 
Solucion pd2 operaciones con conjuntos
Solucion pd2   operaciones con conjuntosSolucion pd2   operaciones con conjuntos
Solucion pd2 operaciones con conjuntos
 
Practica de conjuntos
Practica de conjuntosPractica de conjuntos
Practica de conjuntos
 
OLIMPAMER - JOSE A. ENCINAS
OLIMPAMER - JOSE A. ENCINASOLIMPAMER - JOSE A. ENCINAS
OLIMPAMER - JOSE A. ENCINAS
 
Tema02 4 numeros reales
Tema02 4   numeros realesTema02 4   numeros reales
Tema02 4 numeros reales
 
Examen Cepreuni
Examen CepreuniExamen Cepreuni
Examen Cepreuni
 
Cuatro operaciones aritméticas
Cuatro operaciones aritméticasCuatro operaciones aritméticas
Cuatro operaciones aritméticas
 
01 conjuntos 2
01 conjuntos 201 conjuntos 2
01 conjuntos 2
 
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdfCUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
 
OLIMPAMER - PRECURSORES DE LA INDEPENDENCIA
OLIMPAMER - PRECURSORES DE LA INDEPENDENCIAOLIMPAMER - PRECURSORES DE LA INDEPENDENCIA
OLIMPAMER - PRECURSORES DE LA INDEPENDENCIA
 
Solucion p2 operaciones con conjuntos
Solucion p2   operaciones con conjuntosSolucion p2   operaciones con conjuntos
Solucion p2 operaciones con conjuntos
 
Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
Algebra%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
 

Más de JUANCA

Magnitudes ip fiorella
Magnitudes ip fiorellaMagnitudes ip fiorella
Magnitudes ip fiorellaJUANCA
 
HISTORIA DE LOS NÚMEROS
HISTORIA DE LOS NÚMEROSHISTORIA DE LOS NÚMEROS
HISTORIA DE LOS NÚMEROSJUANCA
 
GEOLOGÍA APLICADA A LA INGENIERÍA CIVIL
GEOLOGÍA APLICADA A LA INGENIERÍA CIVILGEOLOGÍA APLICADA A LA INGENIERÍA CIVIL
GEOLOGÍA APLICADA A LA INGENIERÍA CIVILJUANCA
 
RECURSOS NATURALES
RECURSOS NATURALESRECURSOS NATURALES
RECURSOS NATURALESJUANCA
 
GEOLOGÍA DE CAÑETE FOTOS
GEOLOGÍA DE CAÑETE FOTOSGEOLOGÍA DE CAÑETE FOTOS
GEOLOGÍA DE CAÑETE FOTOSJUANCA
 
Geología cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...
Geología   cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...Geología   cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...
Geología cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...JUANCA
 
5.1.2 geologia
5.1.2 geologia5.1.2 geologia
5.1.2 geologiaJUANCA
 
Estudio hidrogeologico canete
Estudio hidrogeologico caneteEstudio hidrogeologico canete
Estudio hidrogeologico caneteJUANCA
 
Petro lunahuana
Petro lunahuanaPetro lunahuana
Petro lunahuanaJUANCA
 
Método del rombo
Método del romboMétodo del rombo
Método del romboJUANCA
 
La erosión y el transporte
La erosión y el transporteLa erosión y el transporte
La erosión y el transporteJUANCA
 
Método de GAUSS
Método de GAUSSMétodo de GAUSS
Método de GAUSSJUANCA
 
MOVIMIENTOS EN MASA
MOVIMIENTOS EN MASAMOVIMIENTOS EN MASA
MOVIMIENTOS EN MASAJUANCA
 
Concepto de deslizamientos
Concepto de deslizamientosConcepto de deslizamientos
Concepto de deslizamientosJUANCA
 
Ecuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionadosEcuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionadosJUANCA
 
PROBLEMAS RESUELTOS DE DETERMINANTES
PROBLEMAS RESUELTOS DE DETERMINANTESPROBLEMAS RESUELTOS DE DETERMINANTES
PROBLEMAS RESUELTOS DE DETERMINANTESJUANCA
 
MATRICES-PROBLEMAS RESUELTOS
MATRICES-PROBLEMAS RESUELTOSMATRICES-PROBLEMAS RESUELTOS
MATRICES-PROBLEMAS RESUELTOSJUANCA
 
Divisibilidad cocientes notables
Divisibilidad cocientes notablesDivisibilidad cocientes notables
Divisibilidad cocientes notablesJUANCA
 
Practicas de geologia
Practicas de geologiaPracticas de geologia
Practicas de geologiaJUANCA
 
Situaciones lógicas ii
Situaciones lógicas iiSituaciones lógicas ii
Situaciones lógicas iiJUANCA
 

Más de JUANCA (20)

Magnitudes ip fiorella
Magnitudes ip fiorellaMagnitudes ip fiorella
Magnitudes ip fiorella
 
HISTORIA DE LOS NÚMEROS
HISTORIA DE LOS NÚMEROSHISTORIA DE LOS NÚMEROS
HISTORIA DE LOS NÚMEROS
 
GEOLOGÍA APLICADA A LA INGENIERÍA CIVIL
GEOLOGÍA APLICADA A LA INGENIERÍA CIVILGEOLOGÍA APLICADA A LA INGENIERÍA CIVIL
GEOLOGÍA APLICADA A LA INGENIERÍA CIVIL
 
RECURSOS NATURALES
RECURSOS NATURALESRECURSOS NATURALES
RECURSOS NATURALES
 
GEOLOGÍA DE CAÑETE FOTOS
GEOLOGÍA DE CAÑETE FOTOSGEOLOGÍA DE CAÑETE FOTOS
GEOLOGÍA DE CAÑETE FOTOS
 
Geología cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...
Geología   cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...Geología   cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...
Geología cuadrangulo de mala (26j), lunahuaná (26k), tupe (26l), conayca (2...
 
5.1.2 geologia
5.1.2 geologia5.1.2 geologia
5.1.2 geologia
 
Estudio hidrogeologico canete
Estudio hidrogeologico caneteEstudio hidrogeologico canete
Estudio hidrogeologico canete
 
Petro lunahuana
Petro lunahuanaPetro lunahuana
Petro lunahuana
 
Método del rombo
Método del romboMétodo del rombo
Método del rombo
 
La erosión y el transporte
La erosión y el transporteLa erosión y el transporte
La erosión y el transporte
 
Método de GAUSS
Método de GAUSSMétodo de GAUSS
Método de GAUSS
 
MOVIMIENTOS EN MASA
MOVIMIENTOS EN MASAMOVIMIENTOS EN MASA
MOVIMIENTOS EN MASA
 
Concepto de deslizamientos
Concepto de deslizamientosConcepto de deslizamientos
Concepto de deslizamientos
 
Ecuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionadosEcuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionados
 
PROBLEMAS RESUELTOS DE DETERMINANTES
PROBLEMAS RESUELTOS DE DETERMINANTESPROBLEMAS RESUELTOS DE DETERMINANTES
PROBLEMAS RESUELTOS DE DETERMINANTES
 
MATRICES-PROBLEMAS RESUELTOS
MATRICES-PROBLEMAS RESUELTOSMATRICES-PROBLEMAS RESUELTOS
MATRICES-PROBLEMAS RESUELTOS
 
Divisibilidad cocientes notables
Divisibilidad cocientes notablesDivisibilidad cocientes notables
Divisibilidad cocientes notables
 
Practicas de geologia
Practicas de geologiaPracticas de geologia
Practicas de geologia
 
Situaciones lógicas ii
Situaciones lógicas iiSituaciones lógicas ii
Situaciones lógicas ii
 

Último

Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónDanielGrajeda7
 
mapa mental sobre el sistema político...
mapa mental sobre el sistema político...mapa mental sobre el sistema político...
mapa mental sobre el sistema político...alisaraboumg01
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresLluviaAliciaHernande
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfNilssaRojas1
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxlitaroxselyperezmont
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...Andrés Canale
 
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdffaustozurita
 
RubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y SociedadRubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y SociedadRuben53283
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRDanielGrajeda7
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónJonathanCovena1
 
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptxFESARAUGUSTOFANDIORI
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxNoe Castillo
 
Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)portafoliodigitalyos
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxmatepura
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 

Último (20)

Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu Remodelación
 
mapa mental sobre el sistema político...
mapa mental sobre el sistema político...mapa mental sobre el sistema político...
mapa mental sobre el sistema político...
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
 
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
 
RubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y SociedadRubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 
Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024
 
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
Luz desde el santuario. Escuela Sabática
Luz desde el santuario. Escuela SabáticaLuz desde el santuario. Escuela Sabática
Luz desde el santuario. Escuela Sabática
 
Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
 

Conjuntos i

  • 1. CONJUNTOS I 1. Si: A ;a; a ; a,b ; Indicar las proposiciones que son verdaderas. I. a A {a, b} A II. { } A { } A III. A A A) solo I B) solo II C) solo III D) II y IV E) II y III RESOLUCIÓN A ;a; a ; a,b ; I. a A {a, b} A F F = F II. { } A { } A F V = V III. A A V V = V I y III son verdaderas RPTA.: D 2. Dados los conjuntos: A x N 2x 13 B x A x² 2x A Indicar si es verdadero o falso, las siguientes proposiciones. I. x A / x² 5 > 4 II. x (A B) / 2x + 5 < 8 III. x (A B) / x² B A) VVF B) FVF C) VFV D) VFF E) VVV RESOLUCIÓN A x N 2x 13 A 0; 1; 2; 3; 4; 5; 6 B x A x² 2x A x = 0; 1; 2; 3; 4; 5; 6 x² 2x = 0 ; 1; 0 ; 3 ; 8; 15; 24 B = {1; 4; 5; 6} I. x A / x² 5 > 4 (V) II. x (A B)/2x + 5 < 8 (F) III. x (A B) / x² B (V) RPTA.: C 3. Sea A n Z n 600 Calcule la suma de elementos del conjunto B; si 3 B a 2 a A a A A) 1000 B) 1296 C) 1312 D) 1424 E) 1528 RESOLUCIÓN 3 a es cubo perfecto A n Z n 600 1,2,3,4,5,...,600 B a 2 a A a A  a = 1³ ; 2³; 3³; ...; 8³ 2 B 1³ 2 ; 2³ 2 ; 3³ 2 ;....; 8³ 2 elementos 8 x 9 2 8 2de B 1312  Nota: 3 2 N n n 1 S 2 RPTA.: C
  • 2. 4. Halle el cardinal del conjunto B e indicar el número de subconjuntos ternarios que tiene. CONJUNTOS LÓGICA B x Z x 8 x 2 siendo : p q p q A B  A) 48 B) 42 C) 63 D) 56 E) 45 RESOLUCIÓN B x Z x 8 x 2 (x > 8) (x = 2) (x> 8) (x = 2) x = 1; 2; 3; 4; 5; 6; 7; 8 n(B) = 8 #Subconjuntos 8 8! C 3! 5!3Ternarios de B 6 x7x8 56 6 RPTA.: D 5. Dados los conjuntos unitarios A = {a + b; a + 2b 3; 12} y B = {xy ; yx ; 16}; halle el valor de (x + y + a² + b) A) 81 B) 92 C) 96 D) 87 E) 90 RESOLUCIÓN A y B son unitarios: * A = {a + b; a + 2b 3; 12} a + b = 12 a + 2b 3 = 12 a + 2b = 15 como: a + b = 12 b = 3 a = 9 * B = {xy ; yx ; 16} xy = yx = 24 x = 2 ; y = 4 x + y + a² + b = 90 RPTA.: E 6. Calcular el número de subconjuntos binaros del conjunto D, si: D = {(x² 1) Z / 0 < x 4} A) 132 B) 126 C) 105 D) 124 E) 120 RESOLUCIÓN D = {(x² 1) Z / 0 < x 4} 0 < x 4 0 < x² 16 1 <x² 1 15 D = {0; 1; 2; 3; ...;15} n(D)= 16 #Subconjuntos 16 16! C 2! 14!2Binarios de D 15x16 2 15x8 120 RPTA.: E 7. Si: n [P(A)]= 128; n[P(B)]= 32 y n [P(A B)] = 8 Halle el cardinal de P(A B) sumado con el cardinal de: C = 5 3x 1 Z x 3 A) 521 B) 517 C) 519 D) 512 E) 520 RESOLUCIÓN ´
  • 3. * nP(A) = 128 = 27 n(A) = 7 nP(B) = 32 = 25 n(B) = 5 nP(A B) = 8 = 23 n(A B) = 3 n(A B) = 7 + 5 3 = 9 nP(A B) = 29 = 512 * C = 5 3x 1 Z x 3 5 x 3 5 x 3 1 3 1 3   (3x + 1) < 6 C = {1; 2; 3; 4; 5} n(C) = 5 nP(A B) + n(C) = 517 RPTA.: B 8. Oscar compra 9 baldes de pinturas de diferentes colores. Los mezcla en igual proporción. ¿Cuántos nuevos matices se pueden obtener? A) 512 B) 246 C) 247 D) 503 E) 502 RESOLUCIÓN # de colores = 9 # de nuevos matices= 29 1 9 = 512 10 = 502 RPTA.: E 9. El conjunto A tiene 200 subconjuntos no ternarios. ¿Cuántos subconjuntos quinarios tendrá? A) 64 B) 56 C) 48 D) 21 E) 35 RESOLUCIÓN Sea n(A) = x x x 3 x x Subconjuntos 2 C 200 no ternarios x! 2 200 3! x 3 x 2 x 1 x 2 200 6 x 8 Luego : #Subconjuntos 8 8! C 5! x 3!5Quinarios 8 x 7 x 6 56 6 RPTA.: B 10. Si el conjunto “C” tiene (P + 1) elementos y (2P + 3) subconjuntos propios; además: n(A) = 4P + 2 ; n(B) = 3P + 6 y n(A B) = 2P 2 Halle n(A B) A) 14 B) 16 C) 18 D) 17 E) 20 RESOLUCIÓN n(C) = P + 1 # subconjuntos 2P 3 propios de C  P + 1
  • 4. 2P + 1 1 = 2P + 3 P = 2 Luego: n(A) = 4(2) + 2 = 10 n(B) = 3(2) + 6 = 12 n(A B) = 2 n (A B) = 18 RPTA.: C 11. Sean los conjuntos A E ; B E y C E; E conjunto universal, tal que: E = {x Z+ / x < 10} A = x E x 7 A B = {x E / x 9 x > 2} B C = {3} B C = {x E / x 7} A C = A B C Determinar n(A) + n(B) + n(C) A) 9 B) 12 C) 10 D) 13 E) 11 RESOLUCIÓN E={x Z+ /x<10} = {1,2,3,4,5,6,7,8,9} A x E / x 7 1,2,3,4,5,6 A = {7, 8, 9} De: A C A B C A B C A B = {3, 4, 5, 6, 7, 8, 9} B C = {1, 2, 3, 4, 5, 6, 7} n(A) + n(B) + n(C) = 3 + 5 + 3 = 11 RPTA.: E 12. Sean A, B y C tres conjuntos no vacíos que cumplen las condiciones: * A B B A * si x C x B Determinar el valor de verdad de las siguientes proposiciones. I) A y B son disjuntos II) (A B) C III) C (A B) IV) C (A B) A) FVVF B) FFVV C) FFFF D) VFVF E) FFFV RESOLUCIÓN A B B A x C x B Graficando las dos condiciones: I) A y B son disjuntos (F) II) (A B) C (F) III) C (A B) (F) IV) C (A B) (V) RPTA.: E 13. Sean A y B dos conjuntos finitos tales que: * A B = * n(B) = 2 . n(A) * B tiene 128 subconjuntos. ´ ´ ´ ´ ´ 1028 A = 10 B = 12 . 1 . 2. 3 . 4 . 5 . 6 . 7 . 8 . 9 C BA ´ C B A
  • 5. El número de subconjuntos de B excede al número de subconjuntos propios de A en 993. ¿Cuántos subconjuntos propios tiene A ? A) 28 1 B) 210 1 C) 211 1 D) 212 1 E) 213 1 RESOLUCIÓN Sean n(A) = x n(B) = 2x # subconjuntos # subconjuntos 993 de B propios de A   22x (2x 1) = 993 2x (2x 1) = 992 = 25 x 31 x = 5 Luego: # subconjuntos de 7 B 128 2 12 #subconjuntos propios de A 2 1 RPTA.: D 14. Dados los conjuntos: 3x 5 A x N / N 4 x 1 x B N / N 2 2 C x N / 2x 25 Halle: n[(A B) C ] A) 2 B) 3 C) 4 D) 5 E) 6 RESOLUCIÓN * 3x 5 A x N / N 4 3x 5 4N 5 N x 4 3 N = 2; 5; 8 ...... X = 1; 5; 9 ...... A = {1, 5, 9, 13, 17, 21, .....} * x 1 x B N / N 2 2  NATURAL x 1 x 1 No existe natural 2 2 2 B = * C x N / 2x 25 C = {13, 14, 15, 16, 17, .....} n(A B) C A B (DIFERENCIA SIMÉTRICA) n (A C ) = n(A C) = n {1, 5, 9} = 3 RPTA.: B 15. Para los conjuntos A, B y C afirmamos: I. Si A B C C B A II. A A III. A B A B IV. Si A B B A V. A B A B A Son verdaderas: A) todas B) solo II y III C) todas excepto V D) solo II, III, IV y V E) solo I, II y V RESOLUCIÓN I. Si A B C C B A (V) ´ ´ ´ ´´ ´´ ´ ´ ´´ 2 5 10 B = 10A = 5 U ´´´ ´
  • 6. II. A A (V) III. A B A B (V) IV. Si A B B A (V) V. A B A B A (V) RPTA.: A 16. Si A y B son dos conjuntos finitos, tal que, el número de subconjuntos de A y de B suman 320, los conjuntos A y B tienen 2 elementos comunes; determine n(A B) A) 14 B) 13 C) 12 D) 11 E) 10 RESOLUCIÓN 320 = n(PA) + n (PB) 320 = 2n(A) + 2n(B) 320 = 26 + 28 Luego: n(A) = 6 n(B) = 8 n(A B) = 10 RPTA.: E 17. Sean A, B y C conjuntos no vacíos diferentes dos a dos, tales que: B A ; C B A C Al simplificar: [B (C A)] [A (B C)] se obtiene: A) A B) B C) A B D) A C E) RESOLUCIÓN B A ; C B ; A C A B ; C B ; A C   Graficando y enumerando las regiones: B C A A B C   [2] [1; 3] = RPTA.: E 18. Sean A y B dos conjuntos cualesquiera, simplificar: A B A B A B A) A B B) A B C) A B D) A B E) RESOLUCIÓN Graficando los conjuntos A y B A B A B A B   (A B) (B A) ´ ´ ´ ´ ´ ´´ ´´´ 4 62 A B 2 B C A 1 2 3 ´ ´ ´´ 2 31 4 A B ´ ´´ ´ ´ ´ ´
  • 7. 1,2,3 2,3 1,2,3 1,4 1 A B RPTA.: A 19. En el gráfico, las zonas sombreadas están representadas por: I) [A (B C)] [C D] II) (A B) (B C) III) [(A D) C] [A (B C)] A) solo I B) solo II C) solo I y II D) solo II y III E) todos RESOLUCIÓN I) [A (B C)] [C D] [{1,2,3} {2,6,5}] {7} = {1,3,7}: si II) (A B) (B C) {1,2,3,4,5,6,7} {2,5,6} = {1,3,4,7} no III) [(A D) C] [A (B C)] {1,2,5} {1,3} = {1} no RPTA.: A 20. Dado 3 conjuntos A; B y C: Si n(A) = m ; n(B) = m + r n(C) = m + 2r ; además: n[P(A)] + n[P(B)]+ n[P(C)] = 896 Se sabe además que A, B y C son disjuntos. Calcule n(A B C) A) 16 B) 22 C) 24 D) 32 E) 48 RESOLUCIÓN n(A) = m ; n(B) = m + r ; n(C) = m + 2r   A B C nP nP nP 896 2m + 2m+r + 2m+2r = 896 2m [1 + 2r + 22r ] = 896 = 27 x 7 m = 7 r = 1 A B C 7 8 9 n(A B C) = 24 RPTA.: C B C D A ´ B C D A 1 2 3 4 5 6 7