SlideShare una empresa de Scribd logo
ÁREA: MATEMÁTICA GRADO : 4TO NIVEL: Secundaria
PROGRAMA :
CREATIVE SUMMER
FECHA :
Página | 1
POLINOMIOS
1.- El valor de “n” si:
n12
1n n
)x(
x
x
P
−−−−
====
Es de 4to
Grado.
a) 1 b) 2 c) 3
d) 4 e) 5
2.- Calcular el valor de “n”, si:
)x)(x)(x(P n1nn
)x(
−−−−
====
Es de grado 13.
a) 1 b) 2 c) 3
d) 4 e) 5
3.- Si: G.A. = 45
Además:
3
2
GR
GR
)y(
)x(
====
P(x) = abx2a-b
ya-2b
Halle el coeficiente del monomio:
a) 8 b) 18 c) 30
d) -36 e) 40
4.- En el polinomio:
P(x; y) ≡≡≡≡ 2xn+3
ym-2
z6-n
+ xn+2
ym+3
el
G.A. = 16 y G.R.(x) – GR(y) = 5.
Calcular el valor de: 2m + n + 1
a) 5 b) 10 c) 15
d) 20 e) 25
5.- Dado el polinomio:
P(x; y) = xa-2
yb+5
+ 2xa-3
yb
+ 7xa-1
yb+6
Donde: G.A. = 17 ∧∧∧∧ G.R.(x) = 4
Calcular: (a - b)2
a) 1 b) 2 c) 4
d) 9 e) 16
6.- Calcular el grado absoluto del polinomio.
n5n
3
2n2n
)y,x( yyx4yxP −−−−−−−− ++++−−−−====
a) 8 b) 9 c) 10
d) 12 e) 15
7.-Hallar a + b, si el polinomio es homogéneo.
1ab3a5aa
)y,x( cxbyaxP
++++−−−−
++++++++====
a) 8 b) 9 c) 10
d) 11 e) 12
8.- Hallar: a + b
ax2
+ bx + 7 ≡≡≡≡ k(3x2
– 2x + 1)
a) 4 b) 5 c) 6
d) 7 e) 8
9.- Calcular: m + 2n en:
m(x + n) + n(x + m) ≡≡≡≡ 3x – 56
a) -3 b) -2 c) -1
d) 3 e) 5
10.- Hallar: a + b + c.
Si el polinomio es idénticamente nulo.
P(x) = a(3x2
– x + 2) + b(2x - 1) - c(x2
- x) – 6x
a) 5 b) 6 c) 7
d) 8 e) 9
11.- Si: P(x) es un polinomio completo y ordenado
ascendentemente.
Hallar: (a + b + c + d)
P(x) = xa+d-1
+ 2xa-c+1
+ 3xa+b-4
a) 9 b) 10 c) 8
d) 7 e) 11
12.- Hallar: (a + b), si el polinomio es
homogéneo:
P(x, y) = 3x2a-5
y4b
+ 5x2a-4b
y3
+ x4
y9
a) 8 b) 9 c) 10
d) 7 e) 5
13.- Calcular los valores de m y n para que el
polinomio sea completo y n > p.
P(x) = (2 + n)xm+3
+ 5x2
+ xp-m
+ 2xn
a) 0 ;1 b) 2; 3 c) 0; 2
d) 1; 2 e) 3; 4
“Año de la Promoción de la Industria Responsable y del Compromiso Climático”
Página | 2
14.- Si el polinomio se anula para más de 2
valores asignados a su variable.
P(x)=(ab + ac - 3)x2
+(ac + bc - 6)x+(ab+ bc - 9)
Hallar:
N = abc(a + b)(a + c)(b + c)
a) 160 b) 163 c) 161
d) 162 e) 164
15.- Si F(x) es completo y ordenado.
Hallar: “a + n” si tiene (2n + 8) términos.
F(x) = xn-3
+ xn-2
+ xn-1
+ … + xa+4
a) 12 b) 14 c) 16
d) 18 e) 20
16.- Si el monomio:
3 2m
2m
x
xx
P
++++
−−−−
====
Es de tercer grado, entonces el valor de “m” es:
a) 12 b) 15 c) 22
d) 20 e) 25
17.- Si:
n2
4n32n
)x(
x)x( ++++−−−−
Es de 4to
Grado. Hallar: “n”
a) 6 b) -4 c) 4
d) 3 e) 2
18.- En el siguiente polinomio:
P(x, y) = mx3m
+ x3m-1
y5m+2
+ y5m-6
Se cumple que:
G.R.(y) = 2(G. R(x))
Calcular el grado absoluto del polinomio.
a) 13 b) 17 c) 14
d) 10 e) 8
19.- Del polinomio:
P(x, y) = 35
xn+3
ym-2
z6-n
+ xn+2
ym-3
Se cumple:
G.A. (P) = 11
G.R.(x) – G.R.(Y) = 5
Luego: “2m + n” es:
a) 5 b) 10 c) 15
d) 25 e) 12
20.- Indicar el grado del polinomio:
a11
1
4
a
4a
1
2
a
5a
)y,x( xyxyxP −−−−
++++
−−−−
++++
−−−− ++++++++====
a) 6 b) 8 c) 7
d) 3 e) 4
21.- Dado el monomio:
M(x, y, z) = 5xa
yb
zc
Calcular abc, si al sumar los G.R. de 2 en 2 se
obtiene 10, 7 y 11 respectivamente.
a) 26 b) 52 c) 108
d) 84 e) 100
22.- En el polinomio completo y ordenado en
forma descendente:
P(x) = xa+b-6
+ (a - b)x + 3xa-b
Calcular: “ab”
a) 16 b) 8 c) 12
d) 10 e) 4
23.- Si el polinomio:
822ab7ba
)z,y,x( )zy(yxxP ++++++++====
Es homogéneo.
Calcular:
ba
6ba 22
++++
++++++++
a) 71/9 b) 55 c) 14
d) 5 e) 8
24.- Si el polinomio:
P(x) = (a-2b+3)x5
+ (b-2c-1)x4
+ (c-2a+2)x7
Se anula para cualquier valor de las variables.
Calcular:
(a + b + c)2
a) 4 b) 81 c) 16
d) 21 e) 36
25.- Si los polinomios:
P(x, y) = xa
yb+1
+ xc
yd-3
Q(x, y) = xa+1
yb
+ x4-a
y3-b
Son idénticas, calcular:
(a + b + c + d)
a) 8 b) 9 c) 10
d) 11 e) 12
“Año de la Promoción de la Industria Responsable y del Compromiso Climático”
Página | 3
26.- En el polinomio homogéneo:
P(x, y, z) = 5xm+n
– 7xn
y2m-3
+ 8xm
y2n
zn-10
+ 11z3n-7
Calcular: (m - n)m
a) 16 b) -16 c) 9
d) -8 e) -4
27.- En el polinomio completo y ordenado en
forma creciente. Calcular la suma de
coeficientes.
P(x) = mym+n
+ nym-1
– pyp-t
+ tyt
a) -2 b) 3 c) 4
d) 5 e) 7
28.- Hallar: (a + b)c
4xx
2
3
6cx)3b(x)2a( 35
2
3b5a ++++++++





≡≡≡≡−−−−++++−−−−++++++++
a) 1/4 b) 0 c) 1
d) 2 e) 220
29.- Hallar el grado de homogeneidad de :
P(x, y) = 8xa+b
yb
+ 3b
xa+b
yb+4
Si: GR(x) es menor en 2 unidades que G.R.(y)
a) 10 b) 20 c) 22
d) 24 e) 26
30.- En un polinomio completo y ordenado de
grado 4n y de una sola variable se suprimen los
términos que contienen exponentes impares.
¿Cuál es el número de términos que tiene el
polinomio resultante?
a) 2n + 2 b) 2n – 2 c) 2n + 1
d) 2n – 1 e) 2n
31.- Si P(x) ≡x + 1
Halle el valor de:
H = P(x+5) – P(x – 2)
A) 7 B) 6 C) 5 +x
D) x – 3 E) 4
32.- Sea el polinomio:
P(x) ≡(x – 1)6
+(x+1)5
+(x+2)4
+2(x – 2)3
+3
Calcular:
∑ .coef . (P) – 20 T.I.(P)
A) 8 B) 10 C) 6
D) 14 E) 16
33.- Si: F(x)+G(x)=3x+5
F(x) – G(x) = 7x – 3
Calcular:
G(F(2))
A) – 19 B) – 18 C) – 17
D) – 1 E) – 15
34.- Calcular el primer coeficiente del
polinomio:
F(x) ≡(2a+1)x7
+x5
– 4x4
+ax2
– 19x +3
Si se sabe que la suma de los coeficientes es
igual a su término independiente.
A) 12 B) 15 C) 7
D) 18 E) 6
35.- Si: P(x – 1) ≡x2
+ 4
Hallar: P(x)
A) x2
+ 2x+5 B) x2
– 2x +5
C) x2
+ 2x – 5 D) x2
– 2x – 5
E) x2
+ 5
36.- Halle “n” si el siguiente polinomio:
P(x) ≡(2x – 1)3
+ 4x+2n
se cumple:
∑coef.(P)+T.I. (P) = 12
A) 1 B) 2 C) 3
D) 4 E) 0
37.- Se define: Nx ∈∀
x;si x es par
P(x) x 3
; si x es impar
2


≡  +

El valor de:
)3()2(
)4()1(
PP
PP
E
+
+
= Será:
A) 1/3 B) 2/7 C) 6/5
D) 3/7 E) 1/12
38.- Si el polinomio es Mónico:
P(x) ≡ (a – 5)x2
+ ax – a +1
Indique el valor de:
E = P(3)+P(2) +P(– 2)
A) 21 B) 20 C) 15
D) 6 E) – 4
“Año de la Promoción de la Industria Responsable y del Compromiso Climático”
Página | 4
39.- Si los términos algebraicos:
T1 = a2
bxa – 3
y10 – b
T2 = ab2
xb+1
ya+2
son semejantes, indicar la suma de ellos.
A) 96x6
y16
B) 72x3
y8
C) 48x6
y8
D) 48x3
y16
E) 96x3
y8
40.- Calcular “A – B” si el polinomio:
P(x) ≡ (A – 2)x4
+(B – 3)x2
+ Bx+A
es de primer grado
A) – 1 B) 1 C) – 2
D) 2 E) 3
41.- En el polinomio: P(x) ≡3x2
– 2nx +1
Si la suma de coeficientes es 2, el valor de
P(– 1) es:
A) 2 B) 3 C) 4
D) 5 E) 6
42.- Sabiendo que: P( 2x+5) ≡4x2
– 10x +1,
Calcule el valor de: P(2)
A) 25 B) 17 C) 29
D) 30 E) 18
43.- Si la expresión:
M(x) ≡axc+2
– bxa – 1
+cx5
+ x b–3
Se reduce a un monomio, indicar su coeficiente
A) 4 B) 7 C) 2
D) 3 E) 10
44.- Sabiendo que: G(x – 2) =3x+1,
¿qué valor debe tomar “x” para que
G(x+3)=19?
A) 0 B) 1 C) 2
D) 3 E) 4
45.- Si P(x) ≡2x+3 ; Q(x) ≡ 3x – 1
Calcular: P(Q(1))+Q(P1))
A) 20 B) 21 C) 22
D) 23 E) 24
46.- Dado el polinomio:
P(x)=x2
+2x+2 ; Hallar el valor de:
E=P(1)+P(2)+P(3)+……..+P(10)
A) 515 B) 514 C) 513
D) 510 E) 505
47.- Si F(x)=x41
+512x32
+8, hallar F(– 2).
A) 2 B) 4 C) 6
D) 8 E) 10
48.- Calcular “n” en:
P(x) = (x+1)2
(x+n)3
(x+3)2
+x+1
si: P(0)=73.
A) 3 B) 1 C) 2
D) 4 E) – 3
49.- Sabiendo que: P(x – 2)=3x – 5
P(Q(x)) = 27x+4
Calcular: Q(P(– 1))
A) 13 B) – 5 C) – 17
D) 3 E) – 1
50.- Si P(x)=x3
P(Q(x))=x3
+3x2
+3x+1
Hallar Q(5)
A) 2 B) 4 C) 6
D) 8 E) 10
51.- Si: P(3x-2) = 6x + 1
Hallar: P(x) = ¿?
a) 2x+4 b) 2x+3 c) 2x+5
d) 2x-7 e) N.A.
52.- Si: P(2x –1) = 8x + 4
Hallar: P(x) = ??
a) 4x +7 b) 4x + 6 c) 4x +3
d) 4x + 8 e) N.A.
53.- Si: P(4x –1) = 8x – 7
Hallar: L = P(x +1) – P(x –1)
a) 1 b) 2 c) 3
d) 4 e) 7
54.- Si: P(x) = x2
– 2x + 3
Hallar “a” en:
P(a + 1) – P(a – 1) = 4
a) 1 b) 2 c) 3
d) 4 e) 8

Más contenido relacionado

La actualidad más candente

Triangulos rectangulos notables(completo)
Triangulos rectangulos notables(completo)Triangulos rectangulos notables(completo)
Triangulos rectangulos notables(completo)
Martin Huamán Pazos
 
solucionario del examen de álgebra
solucionario del examen de álgebrasolucionario del examen de álgebra
solucionario del examen de álgebra
Marco Antonio
 
Practica nº 3 geometria 4to año triangulos rectangulos notables
Practica nº 3 geometria 4to año triangulos rectangulos notablesPractica nº 3 geometria 4to año triangulos rectangulos notables
Practica nº 3 geometria 4to año triangulos rectangulos notables
karlosnunezh
 
EJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIAL
EJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIALEJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIAL
EJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIAL
Miguel Vasquez
 
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
Demetrio Ccesa Rayme
 
Libro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitariaLibro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitaria
Ruben Espiritu Gonzales
 
Teoría y problemas de Geometría ADUNI ccesa007
Teoría y problemas de Geometría ADUNI  ccesa007Teoría y problemas de Geometría ADUNI  ccesa007
Teoría y problemas de Geometría ADUNI ccesa007
Demetrio Ccesa Rayme
 
Razones trigonometricas de angulos notables
Razones trigonometricas de angulos notablesRazones trigonometricas de angulos notables
Razones trigonometricas de angulos notables
EDWIN RONALD CRUZ RUIZ
 
Semana08 identidades trigonometricas
Semana08 identidades trigonometricasSemana08 identidades trigonometricas
Semana08 identidades trigonometricas
Jhon Villacorta
 
Semana 13 2016 2
Semana 13 2016 2Semana 13 2016 2
Semana 13 2016 2
Juan Carbajal Perales
 
Solucionario semana 1
Solucionario semana 1Solucionario semana 1
Solucionario semana 1
Rodolfo Carrillo Velàsquez
 
Solucionario san marcos 2012 ii bcf
Solucionario san marcos 2012   ii bcfSolucionario san marcos 2012   ii bcf
Solucionario san marcos 2012 ii bcf
Rafael Moreno Yupanqui
 
Solucionario de Física I
Solucionario de Física ISolucionario de Física I
Solucionario de Física I
Cliffor Jerry Herrera Castrillo
 
Mcd y mcm de polinomios
Mcd y mcm de polinomiosMcd y mcm de polinomios
Mcd y mcm de polinomios
Manuel Marcelo
 
Problemas resueltos
Problemas resueltosProblemas resueltos
Problemas resueltos
elvis CC
 
SOLUCIONARIO EXAMEN DE ADMISIÓN UNI 2007 I
SOLUCIONARIO EXAMEN DE ADMISIÓN UNI  2007 ISOLUCIONARIO EXAMEN DE ADMISIÓN UNI  2007 I
SOLUCIONARIO EXAMEN DE ADMISIÓN UNI 2007 I
Beto Mendo
 
(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)
Walter Perez Terrel
 
Solucionario examen admision_2013-i san marcos
Solucionario examen admision_2013-i san marcosSolucionario examen admision_2013-i san marcos
Solucionario examen admision_2013-i san marcos
junprc1
 
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Mery Lucy Flores M.
 
Ejercicios de sistema de numeración
Ejercicios de sistema de numeraciónEjercicios de sistema de numeración
Ejercicios de sistema de numeración
Luis Florez Luis Florez
 

La actualidad más candente (20)

Triangulos rectangulos notables(completo)
Triangulos rectangulos notables(completo)Triangulos rectangulos notables(completo)
Triangulos rectangulos notables(completo)
 
solucionario del examen de álgebra
solucionario del examen de álgebrasolucionario del examen de álgebra
solucionario del examen de álgebra
 
Practica nº 3 geometria 4to año triangulos rectangulos notables
Practica nº 3 geometria 4to año triangulos rectangulos notablesPractica nº 3 geometria 4to año triangulos rectangulos notables
Practica nº 3 geometria 4to año triangulos rectangulos notables
 
EJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIAL
EJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIALEJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIAL
EJERCICIO DE ASPA DOBLE Y ASPADOBLE ESPECIAL
 
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
 
Libro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitariaLibro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitaria
 
Teoría y problemas de Geometría ADUNI ccesa007
Teoría y problemas de Geometría ADUNI  ccesa007Teoría y problemas de Geometría ADUNI  ccesa007
Teoría y problemas de Geometría ADUNI ccesa007
 
Razones trigonometricas de angulos notables
Razones trigonometricas de angulos notablesRazones trigonometricas de angulos notables
Razones trigonometricas de angulos notables
 
Semana08 identidades trigonometricas
Semana08 identidades trigonometricasSemana08 identidades trigonometricas
Semana08 identidades trigonometricas
 
Semana 13 2016 2
Semana 13 2016 2Semana 13 2016 2
Semana 13 2016 2
 
Solucionario semana 1
Solucionario semana 1Solucionario semana 1
Solucionario semana 1
 
Solucionario san marcos 2012 ii bcf
Solucionario san marcos 2012   ii bcfSolucionario san marcos 2012   ii bcf
Solucionario san marcos 2012 ii bcf
 
Solucionario de Física I
Solucionario de Física ISolucionario de Física I
Solucionario de Física I
 
Mcd y mcm de polinomios
Mcd y mcm de polinomiosMcd y mcm de polinomios
Mcd y mcm de polinomios
 
Problemas resueltos
Problemas resueltosProblemas resueltos
Problemas resueltos
 
SOLUCIONARIO EXAMEN DE ADMISIÓN UNI 2007 I
SOLUCIONARIO EXAMEN DE ADMISIÓN UNI  2007 ISOLUCIONARIO EXAMEN DE ADMISIÓN UNI  2007 I
SOLUCIONARIO EXAMEN DE ADMISIÓN UNI 2007 I
 
(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)
 
Solucionario examen admision_2013-i san marcos
Solucionario examen admision_2013-i san marcosSolucionario examen admision_2013-i san marcos
Solucionario examen admision_2013-i san marcos
 
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
Solucionario PRE SAN MARCOS- Semana 6 Ciclo 2016 1
 
Ejercicios de sistema de numeración
Ejercicios de sistema de numeraciónEjercicios de sistema de numeración
Ejercicios de sistema de numeración
 

Destacado

2º álgebra
2º álgebra2º álgebra
Polinomios
PolinomiosPolinomios
Polinomios
MaestroJCH
 
POLINOMIOS
POLINOMIOSPOLINOMIOS
Polinomios Especiales
Polinomios EspecialesPolinomios Especiales
Polinomios Especiales
fernando1808garcia
 
Problemas de aplicación de polinomios
Problemas de aplicación de polinomiosProblemas de aplicación de polinomios
Problemas de aplicación de polinomios
Airlive Live
 
Grado de expresiones algebraicas
Grado de expresiones algebraicasGrado de expresiones algebraicas
Grado de expresiones algebraicas
Hespinoza
 
Guía de polinomios 5to 271014
Guía de polinomios 5to 271014Guía de polinomios 5to 271014
Guía de polinomios 5to 271014
norkamendezcelis
 
Punto de equilibrio
Punto de equilibrioPunto de equilibrio
Punto de equilibrio
Ian Santillann
 
Sesion area matematica nivel secundaria
Sesion area matematica nivel secundariaSesion area matematica nivel secundaria
Sesion area matematica nivel secundaria
sheila sierralta pinedo
 
Algebraica 1
Algebraica 1Algebraica 1
Taller valor numerico
Taller valor numericoTaller valor numerico
Taller valor numerico
Ramiro Muñoz
 
Cepre guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...
Cepre   guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...Cepre   guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...
Cepre guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...
Juan Jose Tello
 
El orden es importante
El orden es importanteEl orden es importante
El orden es importante
Cesar Aguilar Ramos
 
G1 im fyp_recuerdo reducción de términos semejantes
G1 im fyp_recuerdo reducción de términos semejantesG1 im fyp_recuerdo reducción de términos semejantes
G1 im fyp_recuerdo reducción de términos semejantes
Andres Apablaza
 
Guia polinomios
Guia polinomiosGuia polinomios
Guia polinomios
Airlive Live
 
Taller valor numerico mat 8
Taller valor numerico  mat 8Taller valor numerico  mat 8
Taller valor numerico mat 8
Ramiro Muñoz
 
1 relaciones de áreas
1   relaciones de áreas1   relaciones de áreas
1 relaciones de áreas
Miguel Vasquez
 
Factorización 1
Factorización 1Factorización 1
Factorización 1
Miguel Vasquez
 
1 relaciones de áreas
1   relaciones de áreas1   relaciones de áreas
1 relaciones de áreas
Miguel Vasquez
 

Destacado (20)

2º álgebra
2º álgebra2º álgebra
2º álgebra
 
Polinomios
PolinomiosPolinomios
Polinomios
 
POLINOMIOS
POLINOMIOSPOLINOMIOS
POLINOMIOS
 
Polinomios Especiales
Polinomios EspecialesPolinomios Especiales
Polinomios Especiales
 
Problemas de aplicación de polinomios
Problemas de aplicación de polinomiosProblemas de aplicación de polinomios
Problemas de aplicación de polinomios
 
Grado de expresiones algebraicas
Grado de expresiones algebraicasGrado de expresiones algebraicas
Grado de expresiones algebraicas
 
Guía de polinomios 5to 271014
Guía de polinomios 5to 271014Guía de polinomios 5to 271014
Guía de polinomios 5to 271014
 
Punto de equilibrio
Punto de equilibrioPunto de equilibrio
Punto de equilibrio
 
Sesion area matematica nivel secundaria
Sesion area matematica nivel secundariaSesion area matematica nivel secundaria
Sesion area matematica nivel secundaria
 
Algebraica 1
Algebraica 1Algebraica 1
Algebraica 1
 
Taller valor numerico
Taller valor numericoTaller valor numerico
Taller valor numerico
 
Cepre guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...
Cepre   guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...Cepre   guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...
Cepre guia 06-07-álgebra-expresiones algebraicas- mon0 mios y términos seme...
 
El orden es importante
El orden es importanteEl orden es importante
El orden es importante
 
G1 im fyp_recuerdo reducción de términos semejantes
G1 im fyp_recuerdo reducción de términos semejantesG1 im fyp_recuerdo reducción de términos semejantes
G1 im fyp_recuerdo reducción de términos semejantes
 
Guia polinomios
Guia polinomiosGuia polinomios
Guia polinomios
 
Taller valor numerico mat 8
Taller valor numerico  mat 8Taller valor numerico  mat 8
Taller valor numerico mat 8
 
1 relaciones de áreas
1   relaciones de áreas1   relaciones de áreas
1 relaciones de áreas
 
Factorización 1
Factorización 1Factorización 1
Factorización 1
 
Formulario 1.
Formulario 1.Formulario 1.
Formulario 1.
 
1 relaciones de áreas
1   relaciones de áreas1   relaciones de áreas
1 relaciones de áreas
 

Similar a Polinomios 4to

Polinomios ii 5to
Polinomios ii   5toPolinomios ii   5to
Polinomios
PolinomiosPolinomios
Alg polinomios
Alg polinomiosAlg polinomios
Alg polinomios
GuillenProfitoPreuni
 
01 polinomios i
01 polinomios i01 polinomios i
01 polinomios i
Doctorcito Arriaga
 
Ab2 2015 x_02
Ab2 2015 x_02Ab2 2015 x_02
Algebra pre division (resueltos)
Algebra pre division (resueltos)Algebra pre division (resueltos)
Algebra pre division (resueltos)
Juan Jose Principe Campos
 
Prueba de unidad
Prueba de unidadPrueba de unidad
Prueba de unidad
Wilder Salazar
 
Semana 2 cs
Semana 2 csSemana 2 cs
Algebra i
Algebra iAlgebra i
Algebra i
Juan Jose Tello
 
algebra2 nova
algebra2 novaalgebra2 nova
algebra2 nova
ScripYt
 
Algebra 3 ro. (reparado)
Algebra 3 ro. (reparado)Algebra 3 ro. (reparado)
Algebra 3 ro. (reparado)
Elizabeth Escalante Pacotaype
 
Semana 4 cs
Semana 4 csSemana 4 cs
Algebra ceprevi ccesa007
Algebra ceprevi ccesa007Algebra ceprevi ccesa007
Algebra ceprevi ccesa007
Demetrio Ccesa Rayme
 
Lección 03 polinomios
Lección 03  polinomiosLección 03  polinomios
Lección 03 polinomios
JoseAntonioChilonBac
 
Sexto 4
Sexto 4Sexto 4
Algebra 4
Algebra 4Algebra 4
Algebra 4
Eduardo Bravo
 
Algebra.doc mc,m mcd- fracciones
Algebra.doc mc,m  mcd- fraccionesAlgebra.doc mc,m  mcd- fracciones
Algebra.doc mc,m mcd- fracciones
Andre Fernandez
 
Algebra 1
Algebra 1Algebra 1
Sexto 4
Sexto 4Sexto 4
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
Cliffor Jerry Herrera Castrillo
 

Similar a Polinomios 4to (20)

Polinomios ii 5to
Polinomios ii   5toPolinomios ii   5to
Polinomios ii 5to
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Alg polinomios
Alg polinomiosAlg polinomios
Alg polinomios
 
01 polinomios i
01 polinomios i01 polinomios i
01 polinomios i
 
Ab2 2015 x_02
Ab2 2015 x_02Ab2 2015 x_02
Ab2 2015 x_02
 
Algebra pre division (resueltos)
Algebra pre division (resueltos)Algebra pre division (resueltos)
Algebra pre division (resueltos)
 
Prueba de unidad
Prueba de unidadPrueba de unidad
Prueba de unidad
 
Semana 2 cs
Semana 2 csSemana 2 cs
Semana 2 cs
 
Algebra i
Algebra iAlgebra i
Algebra i
 
algebra2 nova
algebra2 novaalgebra2 nova
algebra2 nova
 
Algebra 3 ro. (reparado)
Algebra 3 ro. (reparado)Algebra 3 ro. (reparado)
Algebra 3 ro. (reparado)
 
Semana 4 cs
Semana 4 csSemana 4 cs
Semana 4 cs
 
Algebra ceprevi ccesa007
Algebra ceprevi ccesa007Algebra ceprevi ccesa007
Algebra ceprevi ccesa007
 
Lección 03 polinomios
Lección 03  polinomiosLección 03  polinomios
Lección 03 polinomios
 
Sexto 4
Sexto 4Sexto 4
Sexto 4
 
Algebra 4
Algebra 4Algebra 4
Algebra 4
 
Algebra.doc mc,m mcd- fracciones
Algebra.doc mc,m  mcd- fraccionesAlgebra.doc mc,m  mcd- fracciones
Algebra.doc mc,m mcd- fracciones
 
Algebra 1
Algebra 1Algebra 1
Algebra 1
 
Sexto 4
Sexto 4Sexto 4
Sexto 4
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
 

Más de John Carlos Vásquez Huamán

Teoría de funciones ii
Teoría de funciones iiTeoría de funciones ii
Teoría de funciones ii
John Carlos Vásquez Huamán
 
Ficha extra geometría.
Ficha extra geometría.Ficha extra geometría.
Ficha extra geometría.
John Carlos Vásquez Huamán
 
Ficha extra álgebra
Ficha extra álgebraFicha extra álgebra
Ficha extra álgebra
John Carlos Vásquez Huamán
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones teoría
Ecuaciones teoríaEcuaciones teoría
Ecuaciones teoría
John Carlos Vásquez Huamán
 
Divisibilidad algebraica
Divisibilidad algebraicaDivisibilidad algebraica
Divisibilidad algebraica
John Carlos Vásquez Huamán
 
Division algebraica # 02
Division algebraica # 02Division algebraica # 02
Division algebraica # 02
John Carlos Vásquez Huamán
 
Division algebraica #01
Division algebraica #01Division algebraica #01
Division algebraica #01
John Carlos Vásquez Huamán
 
Productos notables
Productos notablesProductos notables
Productos notables
John Carlos Vásquez Huamán
 
Ficha # 3 radicación
Ficha # 3 radicaciónFicha # 3 radicación
Ficha # 3 radicación
John Carlos Vásquez Huamán
 
Miscelanea de verano 4to sec
Miscelanea de verano 4to secMiscelanea de verano 4to sec
Miscelanea de verano 4to sec
John Carlos Vásquez Huamán
 
Perfeccione su ajedrez manuel lópez michelone
Perfeccione su ajedrez   manuel lópez michelonePerfeccione su ajedrez   manuel lópez michelone
Perfeccione su ajedrez manuel lópez michelone
John Carlos Vásquez Huamán
 

Más de John Carlos Vásquez Huamán (13)

Teoría de funciones ii
Teoría de funciones iiTeoría de funciones ii
Teoría de funciones ii
 
Ficha extra geometría.
Ficha extra geometría.Ficha extra geometría.
Ficha extra geometría.
 
Ficha extra álgebra
Ficha extra álgebraFicha extra álgebra
Ficha extra álgebra
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Ecuaciones teoría
Ecuaciones teoríaEcuaciones teoría
Ecuaciones teoría
 
Divisibilidad algebraica
Divisibilidad algebraicaDivisibilidad algebraica
Divisibilidad algebraica
 
Division algebraica # 02
Division algebraica # 02Division algebraica # 02
Division algebraica # 02
 
Division algebraica #01
Division algebraica #01Division algebraica #01
Division algebraica #01
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Solucionario examen uni 2014 i
Solucionario examen uni 2014   iSolucionario examen uni 2014   i
Solucionario examen uni 2014 i
 
Ficha # 3 radicación
Ficha # 3 radicaciónFicha # 3 radicación
Ficha # 3 radicación
 
Miscelanea de verano 4to sec
Miscelanea de verano 4to secMiscelanea de verano 4to sec
Miscelanea de verano 4to sec
 
Perfeccione su ajedrez manuel lópez michelone
Perfeccione su ajedrez   manuel lópez michelonePerfeccione su ajedrez   manuel lópez michelone
Perfeccione su ajedrez manuel lópez michelone
 

Polinomios 4to

  • 1. ÁREA: MATEMÁTICA GRADO : 4TO NIVEL: Secundaria PROGRAMA : CREATIVE SUMMER FECHA : Página | 1 POLINOMIOS 1.- El valor de “n” si: n12 1n n )x( x x P −−−− ==== Es de 4to Grado. a) 1 b) 2 c) 3 d) 4 e) 5 2.- Calcular el valor de “n”, si: )x)(x)(x(P n1nn )x( −−−− ==== Es de grado 13. a) 1 b) 2 c) 3 d) 4 e) 5 3.- Si: G.A. = 45 Además: 3 2 GR GR )y( )x( ==== P(x) = abx2a-b ya-2b Halle el coeficiente del monomio: a) 8 b) 18 c) 30 d) -36 e) 40 4.- En el polinomio: P(x; y) ≡≡≡≡ 2xn+3 ym-2 z6-n + xn+2 ym+3 el G.A. = 16 y G.R.(x) – GR(y) = 5. Calcular el valor de: 2m + n + 1 a) 5 b) 10 c) 15 d) 20 e) 25 5.- Dado el polinomio: P(x; y) = xa-2 yb+5 + 2xa-3 yb + 7xa-1 yb+6 Donde: G.A. = 17 ∧∧∧∧ G.R.(x) = 4 Calcular: (a - b)2 a) 1 b) 2 c) 4 d) 9 e) 16 6.- Calcular el grado absoluto del polinomio. n5n 3 2n2n )y,x( yyx4yxP −−−−−−−− ++++−−−−==== a) 8 b) 9 c) 10 d) 12 e) 15 7.-Hallar a + b, si el polinomio es homogéneo. 1ab3a5aa )y,x( cxbyaxP ++++−−−− ++++++++==== a) 8 b) 9 c) 10 d) 11 e) 12 8.- Hallar: a + b ax2 + bx + 7 ≡≡≡≡ k(3x2 – 2x + 1) a) 4 b) 5 c) 6 d) 7 e) 8 9.- Calcular: m + 2n en: m(x + n) + n(x + m) ≡≡≡≡ 3x – 56 a) -3 b) -2 c) -1 d) 3 e) 5 10.- Hallar: a + b + c. Si el polinomio es idénticamente nulo. P(x) = a(3x2 – x + 2) + b(2x - 1) - c(x2 - x) – 6x a) 5 b) 6 c) 7 d) 8 e) 9 11.- Si: P(x) es un polinomio completo y ordenado ascendentemente. Hallar: (a + b + c + d) P(x) = xa+d-1 + 2xa-c+1 + 3xa+b-4 a) 9 b) 10 c) 8 d) 7 e) 11 12.- Hallar: (a + b), si el polinomio es homogéneo: P(x, y) = 3x2a-5 y4b + 5x2a-4b y3 + x4 y9 a) 8 b) 9 c) 10 d) 7 e) 5 13.- Calcular los valores de m y n para que el polinomio sea completo y n > p. P(x) = (2 + n)xm+3 + 5x2 + xp-m + 2xn a) 0 ;1 b) 2; 3 c) 0; 2 d) 1; 2 e) 3; 4
  • 2. “Año de la Promoción de la Industria Responsable y del Compromiso Climático” Página | 2 14.- Si el polinomio se anula para más de 2 valores asignados a su variable. P(x)=(ab + ac - 3)x2 +(ac + bc - 6)x+(ab+ bc - 9) Hallar: N = abc(a + b)(a + c)(b + c) a) 160 b) 163 c) 161 d) 162 e) 164 15.- Si F(x) es completo y ordenado. Hallar: “a + n” si tiene (2n + 8) términos. F(x) = xn-3 + xn-2 + xn-1 + … + xa+4 a) 12 b) 14 c) 16 d) 18 e) 20 16.- Si el monomio: 3 2m 2m x xx P ++++ −−−− ==== Es de tercer grado, entonces el valor de “m” es: a) 12 b) 15 c) 22 d) 20 e) 25 17.- Si: n2 4n32n )x( x)x( ++++−−−− Es de 4to Grado. Hallar: “n” a) 6 b) -4 c) 4 d) 3 e) 2 18.- En el siguiente polinomio: P(x, y) = mx3m + x3m-1 y5m+2 + y5m-6 Se cumple que: G.R.(y) = 2(G. R(x)) Calcular el grado absoluto del polinomio. a) 13 b) 17 c) 14 d) 10 e) 8 19.- Del polinomio: P(x, y) = 35 xn+3 ym-2 z6-n + xn+2 ym-3 Se cumple: G.A. (P) = 11 G.R.(x) – G.R.(Y) = 5 Luego: “2m + n” es: a) 5 b) 10 c) 15 d) 25 e) 12 20.- Indicar el grado del polinomio: a11 1 4 a 4a 1 2 a 5a )y,x( xyxyxP −−−− ++++ −−−− ++++ −−−− ++++++++==== a) 6 b) 8 c) 7 d) 3 e) 4 21.- Dado el monomio: M(x, y, z) = 5xa yb zc Calcular abc, si al sumar los G.R. de 2 en 2 se obtiene 10, 7 y 11 respectivamente. a) 26 b) 52 c) 108 d) 84 e) 100 22.- En el polinomio completo y ordenado en forma descendente: P(x) = xa+b-6 + (a - b)x + 3xa-b Calcular: “ab” a) 16 b) 8 c) 12 d) 10 e) 4 23.- Si el polinomio: 822ab7ba )z,y,x( )zy(yxxP ++++++++==== Es homogéneo. Calcular: ba 6ba 22 ++++ ++++++++ a) 71/9 b) 55 c) 14 d) 5 e) 8 24.- Si el polinomio: P(x) = (a-2b+3)x5 + (b-2c-1)x4 + (c-2a+2)x7 Se anula para cualquier valor de las variables. Calcular: (a + b + c)2 a) 4 b) 81 c) 16 d) 21 e) 36 25.- Si los polinomios: P(x, y) = xa yb+1 + xc yd-3 Q(x, y) = xa+1 yb + x4-a y3-b Son idénticas, calcular: (a + b + c + d) a) 8 b) 9 c) 10 d) 11 e) 12
  • 3. “Año de la Promoción de la Industria Responsable y del Compromiso Climático” Página | 3 26.- En el polinomio homogéneo: P(x, y, z) = 5xm+n – 7xn y2m-3 + 8xm y2n zn-10 + 11z3n-7 Calcular: (m - n)m a) 16 b) -16 c) 9 d) -8 e) -4 27.- En el polinomio completo y ordenado en forma creciente. Calcular la suma de coeficientes. P(x) = mym+n + nym-1 – pyp-t + tyt a) -2 b) 3 c) 4 d) 5 e) 7 28.- Hallar: (a + b)c 4xx 2 3 6cx)3b(x)2a( 35 2 3b5a ++++++++      ≡≡≡≡−−−−++++−−−−++++++++ a) 1/4 b) 0 c) 1 d) 2 e) 220 29.- Hallar el grado de homogeneidad de : P(x, y) = 8xa+b yb + 3b xa+b yb+4 Si: GR(x) es menor en 2 unidades que G.R.(y) a) 10 b) 20 c) 22 d) 24 e) 26 30.- En un polinomio completo y ordenado de grado 4n y de una sola variable se suprimen los términos que contienen exponentes impares. ¿Cuál es el número de términos que tiene el polinomio resultante? a) 2n + 2 b) 2n – 2 c) 2n + 1 d) 2n – 1 e) 2n 31.- Si P(x) ≡x + 1 Halle el valor de: H = P(x+5) – P(x – 2) A) 7 B) 6 C) 5 +x D) x – 3 E) 4 32.- Sea el polinomio: P(x) ≡(x – 1)6 +(x+1)5 +(x+2)4 +2(x – 2)3 +3 Calcular: ∑ .coef . (P) – 20 T.I.(P) A) 8 B) 10 C) 6 D) 14 E) 16 33.- Si: F(x)+G(x)=3x+5 F(x) – G(x) = 7x – 3 Calcular: G(F(2)) A) – 19 B) – 18 C) – 17 D) – 1 E) – 15 34.- Calcular el primer coeficiente del polinomio: F(x) ≡(2a+1)x7 +x5 – 4x4 +ax2 – 19x +3 Si se sabe que la suma de los coeficientes es igual a su término independiente. A) 12 B) 15 C) 7 D) 18 E) 6 35.- Si: P(x – 1) ≡x2 + 4 Hallar: P(x) A) x2 + 2x+5 B) x2 – 2x +5 C) x2 + 2x – 5 D) x2 – 2x – 5 E) x2 + 5 36.- Halle “n” si el siguiente polinomio: P(x) ≡(2x – 1)3 + 4x+2n se cumple: ∑coef.(P)+T.I. (P) = 12 A) 1 B) 2 C) 3 D) 4 E) 0 37.- Se define: Nx ∈∀ x;si x es par P(x) x 3 ; si x es impar 2   ≡  +  El valor de: )3()2( )4()1( PP PP E + + = Será: A) 1/3 B) 2/7 C) 6/5 D) 3/7 E) 1/12 38.- Si el polinomio es Mónico: P(x) ≡ (a – 5)x2 + ax – a +1 Indique el valor de: E = P(3)+P(2) +P(– 2) A) 21 B) 20 C) 15 D) 6 E) – 4
  • 4. “Año de la Promoción de la Industria Responsable y del Compromiso Climático” Página | 4 39.- Si los términos algebraicos: T1 = a2 bxa – 3 y10 – b T2 = ab2 xb+1 ya+2 son semejantes, indicar la suma de ellos. A) 96x6 y16 B) 72x3 y8 C) 48x6 y8 D) 48x3 y16 E) 96x3 y8 40.- Calcular “A – B” si el polinomio: P(x) ≡ (A – 2)x4 +(B – 3)x2 + Bx+A es de primer grado A) – 1 B) 1 C) – 2 D) 2 E) 3 41.- En el polinomio: P(x) ≡3x2 – 2nx +1 Si la suma de coeficientes es 2, el valor de P(– 1) es: A) 2 B) 3 C) 4 D) 5 E) 6 42.- Sabiendo que: P( 2x+5) ≡4x2 – 10x +1, Calcule el valor de: P(2) A) 25 B) 17 C) 29 D) 30 E) 18 43.- Si la expresión: M(x) ≡axc+2 – bxa – 1 +cx5 + x b–3 Se reduce a un monomio, indicar su coeficiente A) 4 B) 7 C) 2 D) 3 E) 10 44.- Sabiendo que: G(x – 2) =3x+1, ¿qué valor debe tomar “x” para que G(x+3)=19? A) 0 B) 1 C) 2 D) 3 E) 4 45.- Si P(x) ≡2x+3 ; Q(x) ≡ 3x – 1 Calcular: P(Q(1))+Q(P1)) A) 20 B) 21 C) 22 D) 23 E) 24 46.- Dado el polinomio: P(x)=x2 +2x+2 ; Hallar el valor de: E=P(1)+P(2)+P(3)+……..+P(10) A) 515 B) 514 C) 513 D) 510 E) 505 47.- Si F(x)=x41 +512x32 +8, hallar F(– 2). A) 2 B) 4 C) 6 D) 8 E) 10 48.- Calcular “n” en: P(x) = (x+1)2 (x+n)3 (x+3)2 +x+1 si: P(0)=73. A) 3 B) 1 C) 2 D) 4 E) – 3 49.- Sabiendo que: P(x – 2)=3x – 5 P(Q(x)) = 27x+4 Calcular: Q(P(– 1)) A) 13 B) – 5 C) – 17 D) 3 E) – 1 50.- Si P(x)=x3 P(Q(x))=x3 +3x2 +3x+1 Hallar Q(5) A) 2 B) 4 C) 6 D) 8 E) 10 51.- Si: P(3x-2) = 6x + 1 Hallar: P(x) = ¿? a) 2x+4 b) 2x+3 c) 2x+5 d) 2x-7 e) N.A. 52.- Si: P(2x –1) = 8x + 4 Hallar: P(x) = ?? a) 4x +7 b) 4x + 6 c) 4x +3 d) 4x + 8 e) N.A. 53.- Si: P(4x –1) = 8x – 7 Hallar: L = P(x +1) – P(x –1) a) 1 b) 2 c) 3 d) 4 e) 7 54.- Si: P(x) = x2 – 2x + 3 Hallar “a” en: P(a + 1) – P(a – 1) = 4 a) 1 b) 2 c) 3 d) 4 e) 8