Estadística y
Probabilidad II
Probabilidad Conjunta
Ciclo Escolar
2014-2015
La Teoría de la Probabilidad
• La teoría de la probabilidad es la parte de las matemáticas que estudia los
fenómenos aleatorios estocásticos (ley de probabilidad que da la
evolución de un sistema depende del tiempo).
• Estos contraponen a los fenómenos determinísticos, los cuales son
resultados únicos y/o previsibles de experimentos realizados bajo las
mismas condiciones determinadas, por ejemplo, si se calienta el agua a
100 grados Celsius a nivel del mar se obtendrá vapor.
• Los fenómenos aleatorios (o experimentos aleatorios), por el contrario,
son aquellos que se obtienen como resultados de experimentos
realizados, una y otra vez, bajo las mismas condiciones determinadas pero
como resultados poseen un conjunto de alternativas, por ejemplo, el
lanzamiento de un dado o una moneda.
• La teoría de probabilidad da un cierto número a cada posible resultado
que pueda ocurrir en cada experimento aleatorio, con el fin de cuantificar
dichos resultados y saber si un suceso o evento es mas probable que otro.
• Ante esto podemos definir el concepto de evento de la siguiente forma:
La Teoría de Probabilidad
• Un evento es el
resultado posible,
o un grupo de
resultados de un
experimento
aleatorio o
proceso
observado, y es
considerado
como la mínima
unidad de análisis
para efecto de
calculo de
probabilidades
• Los eventos para
su estudio se
clasifican en:
TiposdeEventos
Mutuamente excluyentes
Son aquellos que no pueden
ocurrir al mismo tiempo.
Independientes
Son los eventos que no se
pueden ver afectados por
otros.
Dependientes
Cuando la probabilidad de
que exista un evento afecta
la ocurrencia de otro.
No excluyentes entre si
Cuando la ocurrencia de un
evento no impide que
suceda también otro.
Eventos complementarios
Cuando si uno no ocurre,
forzosamente el otro si.
Espacios Muéstrales
• Espacio muestral: Un conjunto Ω que consiste en todos los
resultados de un experimento aleatorio se llama un espacio
muestral y cada uno de los resultados se denomina punto
muestral. Con frecuencia habrá mas de un espacio muestral
que describe los resultados de un experimento pero hay
comúnmente sólo uno que suministra la mayoría de la
información. Obsérvese que Ω corresponde al conjunto
universal.
• Con esta definición de espacio muestral obtenemos pues
que un evento es un subconjunto del espacio muestral.
El concepto de Probabilidad
• En cualquier experimento aleatorio siempre hay incertidumbre
sobre si un suceso específico ocurrirá o no. Como medida de la
oportunidad o probabilidad con la que podemos esperar que un
suceso ocurra es conveniente asignar un número entre 0 y 1. Si
estamos seguros de que el suceso ocurrirá decimos que su
probabilidad es 100% o 1, pero si estamos seguros de que el suceso
no ocurrirá decimos que su probabilidad es cero. Por ejemplo, si la
probabilidad es de 1/4, diríamos que hay un 25% de oportunidad de
que ocurra y un 75% de oportunidad de que no ocurra.
• Existen dos procedimientos importantes por medio de los cuales
podemos obtener estimativos para la probabilidad de un suceso.
Enfoque de Probabilidad
Enfoque clássico o a priori
• Si un suceso puede ocurrir
en h maneras diferentes de
un número total de n
maneras posibles, todos
igualmente factibles,
entonces la probabilidad del
suceso es h/n.
Enfoque como frecuencia
relativa o a posteriori.
• Si después de n repeticiones
de un experimento, donde n
es muy grande, un suceso
ocurre h veces, entonces la
probabilidad del suceso es
h/n.
• Esto también se llama la
probabilidad empírica del
suceso.
Ejemplos
Probabilidad clásica o a priori
• Supóngase que deseamos la
probabilidad de que resulte
Águila en un solo
lanzamiento de una
moneda
Probabilidad de frecuencia
relativa o a posteriori.
• Si lanzamos una moneda
1000 veces y hallamos que
532 veces resultan águilas.
¿Cuál es la probabilidad de
que en el siguiente
lanzamiento obtengamos
águila?
Ejemplos
• Escribe el espacio muestral de los siguientes experimentos
aleatorios.
– Sacar una bola de una urna donde hay 5 bolas blancas y 5 bolas negras
– Los colores de un semáforo
• Determinar o estimar la probabilidad p de los siguientes sucesos
– Una tirada de un dado resulte impar.
– Al menos un águila en dos tiradas de una moneda.
– Un As, el 10 de diamante o el 2 de picas aparezca al sacar una sola
carta de una baraja inglesa.
– La suma de los puntos de dos dados sea 7.
– Que aparezca un Sol en la próxima tirada de una moneda si han salido
56 águilas en 100 tiradas.
Eventos
• Como eventos particulares tenemos el evento seguro
Ω, ya que un elemento de Ω puede ocurrir; y el evento
∅ que se llama evento imposible, ya que un elemento
de ∅ no puede ocurrir.
• Puesto que los eventos o sucesos son conjuntos es
lógico que las proporciones relativas a eventos puedan
traducirse a lenguaje de conjuntos e inversamente. En
particular tenemos un “algebra” de eventos que
corresponde al algebra de conjuntos.
Eventos
• Empleando las operaciones de conjuntos en sucesos en
Ω podemos obtener otros sucesos en Ω. Asi si 𝐴 y 𝐵
son eventos, entonces
 𝐴 ∪ 𝐵 es el evento “A o B o ambos”
 𝐴 ∩ 𝐵 es el evento “A y B”
 𝐴′ es el evento “no A”
 𝐴 − 𝐵 es el evento “A, pero no B”
• Si los conjuntos correspondientes a los eventos A y B
son disjuntos, es decir 𝐴 ∩ B = ∅, frecuentemente
decimos que los sucesos son mutuamente excluyentes.
Esto quiere decir que no pueden ocurrir ambos
Axiomas de Probabilidad
• Ambos enfoques, el clásico y el de frecuencias
relativas, presentan serias dificultades. El
primero debido a la vaguedad de las palabras
“igualmente factibles” y el segundo debido a
la vaguedad incluida en un “número muy
grande”.
• A causa de estas dificultades los matemáticos
en los últimos años se han orientado en un
enfoque Axiomático utilizando conjuntos.
Axiomas de Probabilidad
• Supóngase que tenemos un espacio muestral Ω. A cada
evento 𝐴 de Ω asociamos un numero real 𝑃(𝐴), es decir 𝑃 es
una función de valores reales. 𝑃 es llamada una función de
probabilidad, y 𝑃(𝐴) la probabilidad del evento 𝐴, si se
satisfacen los axiomas siguientes.
Axioma 1. Para cada evento A de Ω
𝑃(𝐴) ≥ 0
Axioma 2. Para cada evento seguro Ω
𝑃(Ω) = 1
Axioma 3. Si A y B son sucesos mutuamente excluyentes,
es decir 𝐴 ∩ 𝐵 = ∅, entonces
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
Actividad
• Se saca al azar una bola de una caja que contiene 6 bolas rojas, 4
bolas blancas y 5 azules. Halla la probabilidad de que la bola
extraída sea
a) Roja
b) Blanca
c) Azul
d) No roja
e) Roja o blanca
• En una clase hay 10 alumnas rubias, 20 morenas, 5 alumnos rubios
y 10 morenos hallar la probabilidad de que el representante del
salón
a) Sea hombre
b) Sea mujer morena
c) Sea hombre o mujer
La probabilidad de eventos
“mutuamente excluyentes” y “no
excluyentes entre si”
Regla de la
suma o
adición
Eventos mutuamente
excluyentes
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 𝑜 𝐵
= 𝑃 𝐴 + 𝑃 𝐵
Eventos no excluyentes entre si
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 𝑜 𝐵
= 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 𝑦 𝐵
Ejemplos
• Calcula la probabilidad de sacar un As o una carta
del palo de diamantes de una baraja inglesa.
• Calcule la probabilidad de obtener un numero par
o un múltiplo de tres al lanzar un dado.
• Se numeran 10 bolas y se colocan en una urna
¿Cuál es la probabilidad de que al sacar una bola
de la urna esta sea un múltiplo de 4 o un múltiplo
de 5?
Probabilidad Condicional
(Introducción)
• En una urna se tienen 9 bolas rojas, 7 azules y
8 bolas blancas. ¿Cuál es la probabilidad de
que al sacar dos bolas se obtengan dos bolas
blancas?
a) Si al sacar la primera bola, esta se devuelve a la
urna.
b) Si al sacar la primera bola, esta no se devuelve.
Probabilidad Condicional
• Sean 𝐴 y 𝐵 dos sucesos tales que 𝑃(𝐴) > 0. Denotamos por 𝑃(𝐵|𝐴) la
probabilidad de 𝐵 dado que 𝐴 ha ocurrido. Puesto que se sabe que 𝐴 ha
ocurrido, se convierte en el nuevo espacio muestral remplazando el
original Ω. De aquí llegamos a la definición.
𝑃(𝐵|𝐴) =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴
• O también
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴)
• En palabras, la ecuación anterior nos dice la probabilidad de que tanto A y
B ocurran simultáneamente.
• Si 𝑃 𝐵 𝐴 = 𝑃 𝐵 entonces se dice que 𝐴 y 𝐵 son eventos independientes
entre si, es decir, la ocurrencia de 𝐵 no depende en nada de si ocurre 𝐴 o
no.
La probabilidad de eventos
“Dependientes” e “Independientes”
Regla de la
multiplicación
Eventos Independientes
𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑦 𝐵
= 𝑃 𝐴 ⋅ 𝑃 𝐵
Eventos Dependientes
𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑦 𝐵
= 𝑃 𝐴 ⋅ 𝑃 𝐵|𝐴
• Cual es la probabilidad de obtener una bola
roja y luego una azul de una urna donde hay 4
bolas rojas, 6 bolas blancas y 5 bolas azules.
a) Con remplazo
b) Sin remplazo
• Calcule la probabilidad de obtener dos ases al
sacar dos cartas de la baraja inglesa
a) Con remplazo
b) Sin remplazo
Ejemplos
• De una baraja española (4 palos
con 12 valores) se extraen
simultáneamente dos cartas.
Calcular la probabilidad de que:
a) Las dos sean copas
b) Al menos una sea copas
c) Una sea copa y la otra espada
• Una clase consta de 6 niñas y 10 niños. Si se escoge un
comité de tres al azar, hallar la probabilidad de:
a) Seleccionar tres niños
b) Seleccionar exactamente 2 niños y 1 niña
c) Seleccionar exactamente 1 niño y 2 niñas
d) Seleccionar al menos un niño
La probabilidad de eventos
“Complementarios”
Regla del
complemento
Eventos Complementarios
𝑃 𝐴′ = 𝑃 𝑁𝑜 𝐴 = 1 − 𝑃 𝐴
• La probabilidad de que un vendedor de
electrodoméstico venda un producto en una
visita es de 0.23, ¿cual es la probabilidad de
que en una visita no se realice la venta?
• En un tiro de penal, la probabilidad de que se
anote gol es de 0.87 ¿Cuál es la probabilidad
de que no sea gol?
• El 20% de los empleados de una empresa son
ingenieros y otro 20% son economistas. El 75% de
los ingenieros ocupan un puesto directivo y el
50% de los economistas también, mientras que
los no ingenieros y los no economistas solamente
el 20% ocupa un puesto directivo.
a) Elabora el árbol de probabilidad de este problema
b) ¿Cuál es la probabilidad de que un empleado
tomado al azar ocupe un cargo directivo?
c) Si escojo un empleado directivo al azar ¿Cuál es la
probabilidad de que este sea ingeniero?
Teorema de Bayes
• Si 𝐴1, 𝐴2, 𝐴3, … , 𝐴 𝑛 son eventos mutuamente excluyentes
y cuya unión es el espacio muestral Ω. Si 𝐵 es otro evento
cualquiera, entonces se da el siguiente teorema importante
𝑃(𝐴 𝑘|𝐵) =
𝑃 𝐴 𝑘 𝑃 𝐵 𝐴 𝑘
𝑗=1
𝑛
𝑃 𝐴𝑗 𝑃 𝐵 𝐴𝑗
• Esto nos permite hallar las probabilidades de los diferentes
sucesos que pueden causar la ocurrencia de 𝐵.
• Por esta razón con frecuencia se hace referencia al teorema
de Bayes como teorema de las causas.
Teorema de Bayes
1.-A un congreso asisten 100 personas, de las cuales 65 son hombres y 35 son
mujeres. Se sabe que el 13% de los hombres y el 20% de las mujeres son
especialistas en computación. Si se selecciona al azar a un especialista en
computación ¿Cuál es la probabilidad de que sea mujer?
2.-El parte meteorológico ha anunciado tres posibilidades para el fin de
semana:
– Que llueva: probabilidad del 50%.
– Que nieve: probabilidad del 30%
– Que haya niebla: probabilidad del 20%.
Según estos posibles estados meteorológicos, la posibilidad de que ocurra un
accidente es la siguiente:
– Si llueve: probabilidad de accidente del 10%.
– Si nieva: probabilidad de accidente del 20%
– Si hay niebla: probabilidad de accidente del 5%.
Resulta que efectivamente ocurre un accidente y como no estábamos en la
ciudad no sabemos que tiempo hizo (nevó, llovío o hubo niebla). Calcula la
probabilidad de cada uno de estos fenómenos

Probabilidad Conjunta

  • 1.
    Estadística y Probabilidad II ProbabilidadConjunta Ciclo Escolar 2014-2015
  • 2.
    La Teoría dela Probabilidad • La teoría de la probabilidad es la parte de las matemáticas que estudia los fenómenos aleatorios estocásticos (ley de probabilidad que da la evolución de un sistema depende del tiempo). • Estos contraponen a los fenómenos determinísticos, los cuales son resultados únicos y/o previsibles de experimentos realizados bajo las mismas condiciones determinadas, por ejemplo, si se calienta el agua a 100 grados Celsius a nivel del mar se obtendrá vapor. • Los fenómenos aleatorios (o experimentos aleatorios), por el contrario, son aquellos que se obtienen como resultados de experimentos realizados, una y otra vez, bajo las mismas condiciones determinadas pero como resultados poseen un conjunto de alternativas, por ejemplo, el lanzamiento de un dado o una moneda. • La teoría de probabilidad da un cierto número a cada posible resultado que pueda ocurrir en cada experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso o evento es mas probable que otro. • Ante esto podemos definir el concepto de evento de la siguiente forma:
  • 3.
    La Teoría deProbabilidad • Un evento es el resultado posible, o un grupo de resultados de un experimento aleatorio o proceso observado, y es considerado como la mínima unidad de análisis para efecto de calculo de probabilidades • Los eventos para su estudio se clasifican en: TiposdeEventos Mutuamente excluyentes Son aquellos que no pueden ocurrir al mismo tiempo. Independientes Son los eventos que no se pueden ver afectados por otros. Dependientes Cuando la probabilidad de que exista un evento afecta la ocurrencia de otro. No excluyentes entre si Cuando la ocurrencia de un evento no impide que suceda también otro. Eventos complementarios Cuando si uno no ocurre, forzosamente el otro si.
  • 4.
    Espacios Muéstrales • Espaciomuestral: Un conjunto Ω que consiste en todos los resultados de un experimento aleatorio se llama un espacio muestral y cada uno de los resultados se denomina punto muestral. Con frecuencia habrá mas de un espacio muestral que describe los resultados de un experimento pero hay comúnmente sólo uno que suministra la mayoría de la información. Obsérvese que Ω corresponde al conjunto universal. • Con esta definición de espacio muestral obtenemos pues que un evento es un subconjunto del espacio muestral.
  • 5.
    El concepto deProbabilidad • En cualquier experimento aleatorio siempre hay incertidumbre sobre si un suceso específico ocurrirá o no. Como medida de la oportunidad o probabilidad con la que podemos esperar que un suceso ocurra es conveniente asignar un número entre 0 y 1. Si estamos seguros de que el suceso ocurrirá decimos que su probabilidad es 100% o 1, pero si estamos seguros de que el suceso no ocurrirá decimos que su probabilidad es cero. Por ejemplo, si la probabilidad es de 1/4, diríamos que hay un 25% de oportunidad de que ocurra y un 75% de oportunidad de que no ocurra. • Existen dos procedimientos importantes por medio de los cuales podemos obtener estimativos para la probabilidad de un suceso.
  • 6.
    Enfoque de Probabilidad Enfoqueclássico o a priori • Si un suceso puede ocurrir en h maneras diferentes de un número total de n maneras posibles, todos igualmente factibles, entonces la probabilidad del suceso es h/n. Enfoque como frecuencia relativa o a posteriori. • Si después de n repeticiones de un experimento, donde n es muy grande, un suceso ocurre h veces, entonces la probabilidad del suceso es h/n. • Esto también se llama la probabilidad empírica del suceso.
  • 7.
    Ejemplos Probabilidad clásica oa priori • Supóngase que deseamos la probabilidad de que resulte Águila en un solo lanzamiento de una moneda Probabilidad de frecuencia relativa o a posteriori. • Si lanzamos una moneda 1000 veces y hallamos que 532 veces resultan águilas. ¿Cuál es la probabilidad de que en el siguiente lanzamiento obtengamos águila?
  • 8.
    Ejemplos • Escribe elespacio muestral de los siguientes experimentos aleatorios. – Sacar una bola de una urna donde hay 5 bolas blancas y 5 bolas negras – Los colores de un semáforo • Determinar o estimar la probabilidad p de los siguientes sucesos – Una tirada de un dado resulte impar. – Al menos un águila en dos tiradas de una moneda. – Un As, el 10 de diamante o el 2 de picas aparezca al sacar una sola carta de una baraja inglesa. – La suma de los puntos de dos dados sea 7. – Que aparezca un Sol en la próxima tirada de una moneda si han salido 56 águilas en 100 tiradas.
  • 9.
    Eventos • Como eventosparticulares tenemos el evento seguro Ω, ya que un elemento de Ω puede ocurrir; y el evento ∅ que se llama evento imposible, ya que un elemento de ∅ no puede ocurrir. • Puesto que los eventos o sucesos son conjuntos es lógico que las proporciones relativas a eventos puedan traducirse a lenguaje de conjuntos e inversamente. En particular tenemos un “algebra” de eventos que corresponde al algebra de conjuntos.
  • 10.
    Eventos • Empleando lasoperaciones de conjuntos en sucesos en Ω podemos obtener otros sucesos en Ω. Asi si 𝐴 y 𝐵 son eventos, entonces  𝐴 ∪ 𝐵 es el evento “A o B o ambos”  𝐴 ∩ 𝐵 es el evento “A y B”  𝐴′ es el evento “no A”  𝐴 − 𝐵 es el evento “A, pero no B” • Si los conjuntos correspondientes a los eventos A y B son disjuntos, es decir 𝐴 ∩ B = ∅, frecuentemente decimos que los sucesos son mutuamente excluyentes. Esto quiere decir que no pueden ocurrir ambos
  • 11.
    Axiomas de Probabilidad •Ambos enfoques, el clásico y el de frecuencias relativas, presentan serias dificultades. El primero debido a la vaguedad de las palabras “igualmente factibles” y el segundo debido a la vaguedad incluida en un “número muy grande”. • A causa de estas dificultades los matemáticos en los últimos años se han orientado en un enfoque Axiomático utilizando conjuntos.
  • 12.
    Axiomas de Probabilidad •Supóngase que tenemos un espacio muestral Ω. A cada evento 𝐴 de Ω asociamos un numero real 𝑃(𝐴), es decir 𝑃 es una función de valores reales. 𝑃 es llamada una función de probabilidad, y 𝑃(𝐴) la probabilidad del evento 𝐴, si se satisfacen los axiomas siguientes. Axioma 1. Para cada evento A de Ω 𝑃(𝐴) ≥ 0 Axioma 2. Para cada evento seguro Ω 𝑃(Ω) = 1 Axioma 3. Si A y B son sucesos mutuamente excluyentes, es decir 𝐴 ∩ 𝐵 = ∅, entonces 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
  • 13.
    Actividad • Se sacaal azar una bola de una caja que contiene 6 bolas rojas, 4 bolas blancas y 5 azules. Halla la probabilidad de que la bola extraída sea a) Roja b) Blanca c) Azul d) No roja e) Roja o blanca • En una clase hay 10 alumnas rubias, 20 morenas, 5 alumnos rubios y 10 morenos hallar la probabilidad de que el representante del salón a) Sea hombre b) Sea mujer morena c) Sea hombre o mujer
  • 14.
    La probabilidad deeventos “mutuamente excluyentes” y “no excluyentes entre si” Regla de la suma o adición Eventos mutuamente excluyentes 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 𝑜 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 Eventos no excluyentes entre si 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 𝑜 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 𝑦 𝐵
  • 15.
    Ejemplos • Calcula laprobabilidad de sacar un As o una carta del palo de diamantes de una baraja inglesa. • Calcule la probabilidad de obtener un numero par o un múltiplo de tres al lanzar un dado. • Se numeran 10 bolas y se colocan en una urna ¿Cuál es la probabilidad de que al sacar una bola de la urna esta sea un múltiplo de 4 o un múltiplo de 5?
  • 16.
    Probabilidad Condicional (Introducción) • Enuna urna se tienen 9 bolas rojas, 7 azules y 8 bolas blancas. ¿Cuál es la probabilidad de que al sacar dos bolas se obtengan dos bolas blancas? a) Si al sacar la primera bola, esta se devuelve a la urna. b) Si al sacar la primera bola, esta no se devuelve.
  • 17.
    Probabilidad Condicional • Sean𝐴 y 𝐵 dos sucesos tales que 𝑃(𝐴) > 0. Denotamos por 𝑃(𝐵|𝐴) la probabilidad de 𝐵 dado que 𝐴 ha ocurrido. Puesto que se sabe que 𝐴 ha ocurrido, se convierte en el nuevo espacio muestral remplazando el original Ω. De aquí llegamos a la definición. 𝑃(𝐵|𝐴) = 𝑃 𝐴 ∩ 𝐵 𝑃 𝐴 • O también 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) • En palabras, la ecuación anterior nos dice la probabilidad de que tanto A y B ocurran simultáneamente. • Si 𝑃 𝐵 𝐴 = 𝑃 𝐵 entonces se dice que 𝐴 y 𝐵 son eventos independientes entre si, es decir, la ocurrencia de 𝐵 no depende en nada de si ocurre 𝐴 o no.
  • 18.
    La probabilidad deeventos “Dependientes” e “Independientes” Regla de la multiplicación Eventos Independientes 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑦 𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵 Eventos Dependientes 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑦 𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵|𝐴
  • 19.
    • Cual esla probabilidad de obtener una bola roja y luego una azul de una urna donde hay 4 bolas rojas, 6 bolas blancas y 5 bolas azules. a) Con remplazo b) Sin remplazo • Calcule la probabilidad de obtener dos ases al sacar dos cartas de la baraja inglesa a) Con remplazo b) Sin remplazo
  • 20.
    Ejemplos • De unabaraja española (4 palos con 12 valores) se extraen simultáneamente dos cartas. Calcular la probabilidad de que: a) Las dos sean copas b) Al menos una sea copas c) Una sea copa y la otra espada • Una clase consta de 6 niñas y 10 niños. Si se escoge un comité de tres al azar, hallar la probabilidad de: a) Seleccionar tres niños b) Seleccionar exactamente 2 niños y 1 niña c) Seleccionar exactamente 1 niño y 2 niñas d) Seleccionar al menos un niño
  • 21.
    La probabilidad deeventos “Complementarios” Regla del complemento Eventos Complementarios 𝑃 𝐴′ = 𝑃 𝑁𝑜 𝐴 = 1 − 𝑃 𝐴
  • 22.
    • La probabilidadde que un vendedor de electrodoméstico venda un producto en una visita es de 0.23, ¿cual es la probabilidad de que en una visita no se realice la venta? • En un tiro de penal, la probabilidad de que se anote gol es de 0.87 ¿Cuál es la probabilidad de que no sea gol?
  • 23.
    • El 20%de los empleados de una empresa son ingenieros y otro 20% son economistas. El 75% de los ingenieros ocupan un puesto directivo y el 50% de los economistas también, mientras que los no ingenieros y los no economistas solamente el 20% ocupa un puesto directivo. a) Elabora el árbol de probabilidad de este problema b) ¿Cuál es la probabilidad de que un empleado tomado al azar ocupe un cargo directivo? c) Si escojo un empleado directivo al azar ¿Cuál es la probabilidad de que este sea ingeniero?
  • 24.
    Teorema de Bayes •Si 𝐴1, 𝐴2, 𝐴3, … , 𝐴 𝑛 son eventos mutuamente excluyentes y cuya unión es el espacio muestral Ω. Si 𝐵 es otro evento cualquiera, entonces se da el siguiente teorema importante 𝑃(𝐴 𝑘|𝐵) = 𝑃 𝐴 𝑘 𝑃 𝐵 𝐴 𝑘 𝑗=1 𝑛 𝑃 𝐴𝑗 𝑃 𝐵 𝐴𝑗 • Esto nos permite hallar las probabilidades de los diferentes sucesos que pueden causar la ocurrencia de 𝐵. • Por esta razón con frecuencia se hace referencia al teorema de Bayes como teorema de las causas.
  • 25.
    Teorema de Bayes 1.-Aun congreso asisten 100 personas, de las cuales 65 son hombres y 35 son mujeres. Se sabe que el 13% de los hombres y el 20% de las mujeres son especialistas en computación. Si se selecciona al azar a un especialista en computación ¿Cuál es la probabilidad de que sea mujer? 2.-El parte meteorológico ha anunciado tres posibilidades para el fin de semana: – Que llueva: probabilidad del 50%. – Que nieve: probabilidad del 30% – Que haya niebla: probabilidad del 20%. Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente: – Si llueve: probabilidad de accidente del 10%. – Si nieva: probabilidad de accidente del 20% – Si hay niebla: probabilidad de accidente del 5%. Resulta que efectivamente ocurre un accidente y como no estábamos en la ciudad no sabemos que tiempo hizo (nevó, llovío o hubo niebla). Calcula la probabilidad de cada uno de estos fenómenos