SlideShare una empresa de Scribd logo
1 de 40
LESIÓN RENAL
AGUDA:
FISIOPATOLOGÍA
Dra. Laura Sofía García Lee R5 Nefrología
Dr. Gerardo Guillermo CorpusJunio 2016
Agenda
 Fisiopatología del daño isquémico y tóxico
 Función normal / Isquémico / Isquémico + AINES
 Anormalidades hemodinámicas renales y sistémicas
 Hormonas vasoactivas en la NTA
 Papel del feedback-túbulo glomerular
 Adenosina
 Mecanismos de daño tubular
 Leucocitos y citocinas inflamatorias
 Mecanismos de daño mitocondrial
Agenda
 Necrosis y apoptosis
 Rol de las especies reactivas de oxígeno
 Lesión renal aguda en sepsis
 Epitelio renal en respuesta a sepsis
 Integración de mecanismos de daño tubular
renal
 AKI + CKD como síndromes interconectados
 Conclusiones
Lesión renal aguda
 Isquémico
 Nefrotóxico
 Endotoxémico
 Falla orgánica
múltiple
 Vascular
 Glomerular
 Tubular
Fisiopatología del daño isquémico y
tóxico
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Función normal del FG
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Depleción de volumen
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Depleción de volumen + AINES
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Mecanismos de falla de filtración en
LRA
Anormalidades hemodinámicas glomerulares y
sistémicas Choque séptico
Choque cardiogénico
LRA establecida
Resistencias arteriolares, TFG y FPR: normal,
choque y LRA
Causas de reducción del FPR
Hormonas vasoactivas en NTA
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Sitios de mayor daño por NTA
Alta actividad
metabólica
Mayor
consumo de
O2
Feedback tubuloglomerular
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Hipótesis de la adenosina
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Adenosina
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Mecanismos de daño tubular
 Pérdida de polaridad
 Pérdida de borde en
cepillo
 Redistribución de
integrinas
 Redistribución de
Na+/K+ATPasa apical
 Especies reactivas de
oxígeno (ROS)
 Obstrucción tubular
Mecanismos de daño tubular
 Retrofiltración
 Pérdida de contacto
celular
 Edema celular
 Pérdida de
estructura de
citoesqueleto
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Leucocitos en LRA
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Hypothetical schema of cellular events triggering apoptotic cell death. (FromKroemer et al. [25]
Mecanismos de apoptosis
celular
ROS
Ca+
intracelul
ar
Depleción
ATP
Depleción
NAD/
NADH
Metabolismo mitocondrial y la cadena respiratoria
Mitochondrial dysfunction in inherited renal disease and acute kidney injury, Nature Reviews, Vol 12,
Lesión mitocondrial
y recuperación
durante la LRA
Mitochondrial dysfunction in inherited renal disease and acute kidney injury, Nature Reviews, Vol 12,
Necrosis vs Apoptosis
 Necrosis
 Toxicidad
 No requiere energia
 Edema celular y
cariolisis
 Liberación de
contenido celular
causa inflamación.
 Estimulación
 Requiere energía
 Célula se encoge,
picnosis y
cariorrexis
 No se libera el
contenido y los
macrófagos
fagocitan
rápidamente.
Especies reactivas de
oxígeno (ROS)
Superoxido
Peróxido de
hidrógeno
Ciclooxigenasas y
lipooxigenasas
Xantin
oxidasa
Citocromo
p450
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
ROL DE ESPECIES REACTIVAS DE OXIGENO
EN LRA
 Generación de ROS y xantina oxidasa y aumento
de la conversión de xantina deshidrogenasa a
oxidasa
 Peroxidación lipídica (prevenida por scavengers
de ROS, inhibidores de la xantina oxidasa o
quelantes de hierro
 Tasa redox de glutatión es un parámetro de estrés
oxidativo que disminuye durante la isquemia y
aumenta con la reperfusión
 Dieta deficiente en selenio y vitamina E aumenta
suceptibilidad de lesión
Fragmentación de DNA en
apoptosis y necrosis
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
Citocinas inflamatorias. Efectos
biológicos
Organo Efecto
Pulmón Infiltración celular (neutrófilos, cels T, macrófagos
IL-6, activación TLR4
Corazón Apoptosis celular por TNF-a
Fragmentación mitocondrial y apoptosis
Infiltración de macrófagos por osteopontina
Hipertrofia y fibrosis por actividad de angiotensina I
Hígado Infiltración leucocitaria, estrés oxidativo y apoptosis de
hepatocitos
Alteración del citocromo p450
Intestino Producción de acidos grasos de cadena corta por microbiota
Daño a otros órganos por citocinas
inflamatorias
Lesión renal aguda en sepsis
Epitelio renal en respuesta
inflamatoria
Sepsis
Combinación de activación
inmunológica humoral y
celular.
Nod-like
receptor
RIG-I-Like
receptor
Seminars in Nephrology,Vol 35, No 1, January 2015, pp 85–95
Patrones moleculares asociados a da
Patrones moleculares asociados a patóge
Alteración epitelial tubular renal
Inhibición de ciclo celular en G1
Ciclina D-CDK4/6
inhibida
Seminars in Nephrology,Vol 35, No 1, January 2015, pp 85–95
Desdiferenciación y rediferenciación en
daño epitelial renal inducido por sepsis
Seminars in Nephrology,Vol 35, No 1, January 2015, pp 85–95
Sushrut S. Waikar| Lakshman Gunaratnam| Joseph V. Bonventre. Pathophysiology of
Acute Kidney Injury. Chapter 32.
Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
N Engl J Med 2014;371:58-66. DOI: 10.1056/NEJMra1214243
AKI + CKD  Síndromes
interconectados
N Engl J Med 2014;371:58-66. DOI: 10.1056/NEJMra1214243
Conclusiones
 Diversas causas de disminución flujo renal. No
siempre hay disminución en TFG.
 Daño mitocondrial adquirido, representa evento
temprano durante la LRA.
 Daño tubular más importante.
 En sepsis, los mecanismos de daño activan
respuesta inflamatoria:
 Pérdida de polaridad, daño microcirculatorio, estrés
oxidativo, desdiferenciación – rediferenciación,
fibrosis, reprioritización de energéticos, mitofagia,
detención del ciclo celular y apoptosis.

Más contenido relacionado

La actualidad más candente (20)

Insuficiencia hepática crónica
Insuficiencia hepática crónicaInsuficiencia hepática crónica
Insuficiencia hepática crónica
 
Sindrome cavitario
Sindrome cavitario Sindrome cavitario
Sindrome cavitario
 
Disnea paroxistica nocturna
Disnea paroxistica nocturnaDisnea paroxistica nocturna
Disnea paroxistica nocturna
 
OLIGURIA
OLIGURIAOLIGURIA
OLIGURIA
 
Sesion hepatopatia
Sesion hepatopatiaSesion hepatopatia
Sesion hepatopatia
 
Neumonia
NeumoniaNeumonia
Neumonia
 
Enfisema pulmonar
Enfisema pulmonarEnfisema pulmonar
Enfisema pulmonar
 
Enfermedad Pulmonar Obstructiva Crónica (EPOC) 2018
 Enfermedad Pulmonar Obstructiva Crónica (EPOC) 2018 Enfermedad Pulmonar Obstructiva Crónica (EPOC) 2018
Enfermedad Pulmonar Obstructiva Crónica (EPOC) 2018
 
Insuficiencia Renal Aguda
Insuficiencia Renal AgudaInsuficiencia Renal Aguda
Insuficiencia Renal Aguda
 
PATOLOGIAS DE LA PROSTATA - PROSTATITIS
PATOLOGIAS DE LA PROSTATA - PROSTATITISPATOLOGIAS DE LA PROSTATA - PROSTATITIS
PATOLOGIAS DE LA PROSTATA - PROSTATITIS
 
02) dr. sandoval examen físico
02) dr. sandoval   examen físico02) dr. sandoval   examen físico
02) dr. sandoval examen físico
 
Neumonia intrahospitalaria. Dr. Casanova
Neumonia intrahospitalaria. Dr. CasanovaNeumonia intrahospitalaria. Dr. Casanova
Neumonia intrahospitalaria. Dr. Casanova
 
Encefalopatia hepatica
Encefalopatia hepaticaEncefalopatia hepatica
Encefalopatia hepatica
 
Hemoptisis
HemoptisisHemoptisis
Hemoptisis
 
Astenia
AsteniaAstenia
Astenia
 
Neumonia adquirida en la comunidad
Neumonia adquirida en la comunidadNeumonia adquirida en la comunidad
Neumonia adquirida en la comunidad
 
Insuficiencia cardiaca
Insuficiencia cardiacaInsuficiencia cardiaca
Insuficiencia cardiaca
 
Uropatia obstructiva
Uropatia obstructivaUropatia obstructiva
Uropatia obstructiva
 
Epoc enfisema bronquitis crónica,bronquiectasia y asma
Epoc enfisema bronquitis crónica,bronquiectasia y asmaEpoc enfisema bronquitis crónica,bronquiectasia y asma
Epoc enfisema bronquitis crónica,bronquiectasia y asma
 
Enfisema
EnfisemaEnfisema
Enfisema
 

Similar a Fisiopatologia de la lra

Insuficiencia renal cronica
Insuficiencia renal cronicaInsuficiencia renal cronica
Insuficiencia renal cronicaThe Jedi Temple
 
LRA.pptx
LRA.pptxLRA.pptx
LRA.pptxpoposi
 
Insuficiencia renal aguda modificada [Autoguardado].pptx
Insuficiencia renal aguda modificada [Autoguardado].pptxInsuficiencia renal aguda modificada [Autoguardado].pptx
Insuficiencia renal aguda modificada [Autoguardado].pptxManuelEnriqueAvilaHe
 
Insuficiencia renal en trauma.
Insuficiencia renal  en trauma. Insuficiencia renal  en trauma.
Insuficiencia renal en trauma. Adrian Gasca
 
Rabdomiolisis e Injuria Renal Aguda
Rabdomiolisis e Injuria Renal AgudaRabdomiolisis e Injuria Renal Aguda
Rabdomiolisis e Injuria Renal AgudaAlejandro Paredes C.
 
Insuficiencia renal aguda presentación.pptx
Insuficiencia renal aguda presentación.pptxInsuficiencia renal aguda presentación.pptx
Insuficiencia renal aguda presentación.pptx1909189b
 
FisiopatologíA Y ClíNica De La Insuficiencia Renal
FisiopatologíA Y ClíNica De La Insuficiencia RenalFisiopatologíA Y ClíNica De La Insuficiencia Renal
FisiopatologíA Y ClíNica De La Insuficiencia Renalfisipato13
 
lesionrenalagudalisto-170306045742.pptx
lesionrenalagudalisto-170306045742.pptxlesionrenalagudalisto-170306045742.pptx
lesionrenalagudalisto-170306045742.pptxErickAguilarReyes2
 
Fracaso Renal Agudo Insuficencia Renal
Fracaso Renal Agudo Insuficencia RenalFracaso Renal Agudo Insuficencia Renal
Fracaso Renal Agudo Insuficencia RenalNombre Apellidos
 
TEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdf
TEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdfTEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdf
TEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdfLibiaAguilar2
 
Injuria renal aguda
Injuria renal agudaInjuria renal aguda
Injuria renal agudaAna Angel
 
NEFRO completo(3).pptx
NEFRO completo(3).pptxNEFRO completo(3).pptx
NEFRO completo(3).pptxJuniorVanegas2
 
Nefrotoxicidad por farmacos
Nefrotoxicidad por farmacosNefrotoxicidad por farmacos
Nefrotoxicidad por farmacosMEDICINE VALE´S
 

Similar a Fisiopatologia de la lra (20)

Insuficiencia renal cronica
Insuficiencia renal cronicaInsuficiencia renal cronica
Insuficiencia renal cronica
 
Insuficiencia Renal Aguda
Insuficiencia Renal Aguda Insuficiencia Renal Aguda
Insuficiencia Renal Aguda
 
Fracaso renal agudo
Fracaso renal agudoFracaso renal agudo
Fracaso renal agudo
 
Nia 2019 val
Nia 2019 valNia 2019 val
Nia 2019 val
 
IRA
IRAIRA
IRA
 
LRA.pptx
LRA.pptxLRA.pptx
LRA.pptx
 
Insuficiencia renal aguda modificada [Autoguardado].pptx
Insuficiencia renal aguda modificada [Autoguardado].pptxInsuficiencia renal aguda modificada [Autoguardado].pptx
Insuficiencia renal aguda modificada [Autoguardado].pptx
 
Insuficiencia renal en trauma.
Insuficiencia renal  en trauma. Insuficiencia renal  en trauma.
Insuficiencia renal en trauma.
 
Rabdomiolisis e Injuria Renal Aguda
Rabdomiolisis e Injuria Renal AgudaRabdomiolisis e Injuria Renal Aguda
Rabdomiolisis e Injuria Renal Aguda
 
Insuficiencia renal aguda presentación.pptx
Insuficiencia renal aguda presentación.pptxInsuficiencia renal aguda presentación.pptx
Insuficiencia renal aguda presentación.pptx
 
FisiopatologíA Y ClíNica De La Insuficiencia Renal
FisiopatologíA Y ClíNica De La Insuficiencia RenalFisiopatologíA Y ClíNica De La Insuficiencia Renal
FisiopatologíA Y ClíNica De La Insuficiencia Renal
 
lesionrenalagudalisto-170306045742.pptx
lesionrenalagudalisto-170306045742.pptxlesionrenalagudalisto-170306045742.pptx
lesionrenalagudalisto-170306045742.pptx
 
Lesion renal aguda
Lesion renal agudaLesion renal aguda
Lesion renal aguda
 
Fracaso Renal Agudo Insuficencia Renal
Fracaso Renal Agudo Insuficencia RenalFracaso Renal Agudo Insuficencia Renal
Fracaso Renal Agudo Insuficencia Renal
 
TEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdf
TEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdfTEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdf
TEMA 1 ENFERMEDAD RENAL AGUDA Y CRÓNICA.pdf
 
Falla renal aguda 09 o4-15
Falla renal aguda 09 o4-15Falla renal aguda 09 o4-15
Falla renal aguda 09 o4-15
 
Injuria renal aguda
Injuria renal agudaInjuria renal aguda
Injuria renal aguda
 
NEFRO completo(3).pptx
NEFRO completo(3).pptxNEFRO completo(3).pptx
NEFRO completo(3).pptx
 
Fisiopatologia lesion renal aguda en sepsis
Fisiopatologia lesion renal aguda en sepsisFisiopatologia lesion renal aguda en sepsis
Fisiopatologia lesion renal aguda en sepsis
 
Nefrotoxicidad por farmacos
Nefrotoxicidad por farmacosNefrotoxicidad por farmacos
Nefrotoxicidad por farmacos
 

Último

Barrera hemato-timica y educación de linfocitos T.pptx
Barrera hemato-timica y educación de linfocitos T.pptxBarrera hemato-timica y educación de linfocitos T.pptx
Barrera hemato-timica y educación de linfocitos T.pptxAngelVillegas74
 
Pòster "Exploración de la identidad mediante el collage artístico en grupos t...
Pòster "Exploración de la identidad mediante el collage artístico en grupos t...Pòster "Exploración de la identidad mediante el collage artístico en grupos t...
Pòster "Exploración de la identidad mediante el collage artístico en grupos t...Badalona Serveis Assistencials
 
etapas de la anestesia (inducción, mantenimiento, recuperacion)
etapas de la anestesia (inducción, mantenimiento, recuperacion)etapas de la anestesia (inducción, mantenimiento, recuperacion)
etapas de la anestesia (inducción, mantenimiento, recuperacion)mariaarrdlc
 
FLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.ppt
FLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.pptFLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.ppt
FLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.pptArturoMercado16
 
ANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILES
ANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILESANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILES
ANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILESAndrea394492
 
SANGRE. FISIO MEDICA.pptxcffffffffffcccccc
SANGRE. FISIO MEDICA.pptxcffffffffffccccccSANGRE. FISIO MEDICA.pptxcffffffffffcccccc
SANGRE. FISIO MEDICA.pptxcffffffffffccccccscalderon98
 
(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)
(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)
(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)UDMAFyC SECTOR ZARAGOZA II
 
CASO CLINICO HERNIA INGUINAL - ENFERMERIA
CASO CLINICO HERNIA INGUINAL - ENFERMERIACASO CLINICO HERNIA INGUINAL - ENFERMERIA
CASO CLINICO HERNIA INGUINAL - ENFERMERIADiegoOliveiraEspinoz1
 
Estructura Sanitaria en Venezuela, medicina preventiva
Estructura Sanitaria en Venezuela, medicina preventivaEstructura Sanitaria en Venezuela, medicina preventiva
Estructura Sanitaria en Venezuela, medicina preventivamariagabrielayeguezm
 
Cuadernillo trabajo y manejo de ansiedad
Cuadernillo trabajo y manejo de ansiedadCuadernillo trabajo y manejo de ansiedad
Cuadernillo trabajo y manejo de ansiedadMaraGarcaNez2
 
Métodos de esterilización y su clasificación
Métodos de esterilización y su clasificaciónMétodos de esterilización y su clasificación
Métodos de esterilización y su clasificaciónLuisRojas332009
 
CICLO CARDIACO DEL CORAZON FASES Y EVENTOS
CICLO CARDIACO DEL CORAZON FASES  Y EVENTOSCICLO CARDIACO DEL CORAZON FASES  Y EVENTOS
CICLO CARDIACO DEL CORAZON FASES Y EVENTOSNAYDA JIMENEZ
 
Casos clínicos de partograma ministerio de salud.pptx
Casos clínicos de partograma ministerio de salud.pptxCasos clínicos de partograma ministerio de salud.pptx
Casos clínicos de partograma ministerio de salud.pptxKarinaZambrano20
 
Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...
Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...
Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...Juan Rodrigo Tuesta-Nole
 
Cuadernillo depresion para trabajar a nivel clinico
Cuadernillo depresion para trabajar a nivel clinicoCuadernillo depresion para trabajar a nivel clinico
Cuadernillo depresion para trabajar a nivel clinicoMaraGarcaNez2
 
Infecciones de Vias Urinarias mapa mental
Infecciones de Vias Urinarias mapa mentalInfecciones de Vias Urinarias mapa mental
Infecciones de Vias Urinarias mapa mentalalejandraaguzman195
 
EMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. Resumen
EMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. ResumenEMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. Resumen
EMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. ResumenGusCatacoraHancco
 
Anamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICA
Anamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICAAnamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICA
Anamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICAMELANIEMICHELLERIOSR
 
(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)
(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)
(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)UDMAFyC SECTOR ZARAGOZA II
 

Último (20)

Barrera hemato-timica y educación de linfocitos T.pptx
Barrera hemato-timica y educación de linfocitos T.pptxBarrera hemato-timica y educación de linfocitos T.pptx
Barrera hemato-timica y educación de linfocitos T.pptx
 
Pòster "Exploración de la identidad mediante el collage artístico en grupos t...
Pòster "Exploración de la identidad mediante el collage artístico en grupos t...Pòster "Exploración de la identidad mediante el collage artístico en grupos t...
Pòster "Exploración de la identidad mediante el collage artístico en grupos t...
 
etapas de la anestesia (inducción, mantenimiento, recuperacion)
etapas de la anestesia (inducción, mantenimiento, recuperacion)etapas de la anestesia (inducción, mantenimiento, recuperacion)
etapas de la anestesia (inducción, mantenimiento, recuperacion)
 
FLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.ppt
FLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.pptFLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.ppt
FLUJO SANGUINEO Y CONTROL TA. Clase fisiologia.ppt
 
ANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILES
ANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILESANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILES
ANATOMIA 34 RESUMEN DE LOS TEMAS FÁCILES
 
SANGRE. FISIO MEDICA.pptxcffffffffffcccccc
SANGRE. FISIO MEDICA.pptxcffffffffffccccccSANGRE. FISIO MEDICA.pptxcffffffffffcccccc
SANGRE. FISIO MEDICA.pptxcffffffffffcccccc
 
(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)
(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)
(2024-05-14).Manejo de la IC en AP. Abordaje a lo largo de la enfermedad. (PPT)
 
CASO CLINICO HERNIA INGUINAL - ENFERMERIA
CASO CLINICO HERNIA INGUINAL - ENFERMERIACASO CLINICO HERNIA INGUINAL - ENFERMERIA
CASO CLINICO HERNIA INGUINAL - ENFERMERIA
 
Estructura Sanitaria en Venezuela, medicina preventiva
Estructura Sanitaria en Venezuela, medicina preventivaEstructura Sanitaria en Venezuela, medicina preventiva
Estructura Sanitaria en Venezuela, medicina preventiva
 
Cuadernillo trabajo y manejo de ansiedad
Cuadernillo trabajo y manejo de ansiedadCuadernillo trabajo y manejo de ansiedad
Cuadernillo trabajo y manejo de ansiedad
 
Métodos de esterilización y su clasificación
Métodos de esterilización y su clasificaciónMétodos de esterilización y su clasificación
Métodos de esterilización y su clasificación
 
CICLO CARDIACO DEL CORAZON FASES Y EVENTOS
CICLO CARDIACO DEL CORAZON FASES  Y EVENTOSCICLO CARDIACO DEL CORAZON FASES  Y EVENTOS
CICLO CARDIACO DEL CORAZON FASES Y EVENTOS
 
Casos clínicos de partograma ministerio de salud.pptx
Casos clínicos de partograma ministerio de salud.pptxCasos clínicos de partograma ministerio de salud.pptx
Casos clínicos de partograma ministerio de salud.pptx
 
Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...
Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...
Epidemiologia 6: Evaluación de Pruebas Diagnósticas: Cualidades del Test, Par...
 
Cuadernillo depresion para trabajar a nivel clinico
Cuadernillo depresion para trabajar a nivel clinicoCuadernillo depresion para trabajar a nivel clinico
Cuadernillo depresion para trabajar a nivel clinico
 
Infecciones de Vias Urinarias mapa mental
Infecciones de Vias Urinarias mapa mentalInfecciones de Vias Urinarias mapa mental
Infecciones de Vias Urinarias mapa mental
 
Infografia Enfermeria Profesional Azul.pdf
Infografia Enfermeria Profesional Azul.pdfInfografia Enfermeria Profesional Azul.pdf
Infografia Enfermeria Profesional Azul.pdf
 
EMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. Resumen
EMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. ResumenEMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. Resumen
EMBRIOLOGÍA- LANGMAN 13ºEDICIÓN. Resumen
 
Anamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICA
Anamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICAAnamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICA
Anamnesis-Carlos-Alberto-Seguin-pdf.pdf ANAMNESIS PSICOSOMATICA
 
(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)
(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)
(2024-05-14) MANEJO DE LA INSUFICIENCIA CARDIACA EN ATENCIÓN PRIMARIA (DOC)
 

Fisiopatologia de la lra

  • 1. LESIÓN RENAL AGUDA: FISIOPATOLOGÍA Dra. Laura Sofía García Lee R5 Nefrología Dr. Gerardo Guillermo CorpusJunio 2016
  • 2. Agenda  Fisiopatología del daño isquémico y tóxico  Función normal / Isquémico / Isquémico + AINES  Anormalidades hemodinámicas renales y sistémicas  Hormonas vasoactivas en la NTA  Papel del feedback-túbulo glomerular  Adenosina  Mecanismos de daño tubular  Leucocitos y citocinas inflamatorias  Mecanismos de daño mitocondrial
  • 3. Agenda  Necrosis y apoptosis  Rol de las especies reactivas de oxígeno  Lesión renal aguda en sepsis  Epitelio renal en respuesta a sepsis  Integración de mecanismos de daño tubular renal  AKI + CKD como síndromes interconectados  Conclusiones
  • 4. Lesión renal aguda  Isquémico  Nefrotóxico  Endotoxémico  Falla orgánica múltiple  Vascular  Glomerular  Tubular
  • 5. Fisiopatología del daño isquémico y tóxico Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 6. Función normal del FG Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 7. Depleción de volumen Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 8. Depleción de volumen + AINES Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 9. Mecanismos de falla de filtración en LRA
  • 10. Anormalidades hemodinámicas glomerulares y sistémicas Choque séptico Choque cardiogénico LRA establecida
  • 11. Resistencias arteriolares, TFG y FPR: normal, choque y LRA
  • 13. Hormonas vasoactivas en NTA Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 14. Sitios de mayor daño por NTA Alta actividad metabólica Mayor consumo de O2
  • 15. Feedback tubuloglomerular Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 16. Hipótesis de la adenosina Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 17. Adenosina Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 18. Mecanismos de daño tubular  Pérdida de polaridad  Pérdida de borde en cepillo  Redistribución de integrinas  Redistribución de Na+/K+ATPasa apical  Especies reactivas de oxígeno (ROS)  Obstrucción tubular
  • 19. Mecanismos de daño tubular  Retrofiltración  Pérdida de contacto celular  Edema celular  Pérdida de estructura de citoesqueleto Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 20. Leucocitos en LRA Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 21. Hypothetical schema of cellular events triggering apoptotic cell death. (FromKroemer et al. [25] Mecanismos de apoptosis celular ROS Ca+ intracelul ar Depleción ATP Depleción NAD/ NADH
  • 22. Metabolismo mitocondrial y la cadena respiratoria Mitochondrial dysfunction in inherited renal disease and acute kidney injury, Nature Reviews, Vol 12,
  • 23. Lesión mitocondrial y recuperación durante la LRA Mitochondrial dysfunction in inherited renal disease and acute kidney injury, Nature Reviews, Vol 12,
  • 24.
  • 25. Necrosis vs Apoptosis  Necrosis  Toxicidad  No requiere energia  Edema celular y cariolisis  Liberación de contenido celular causa inflamación.  Estimulación  Requiere energía  Célula se encoge, picnosis y cariorrexis  No se libera el contenido y los macrófagos fagocitan rápidamente.
  • 26. Especies reactivas de oxígeno (ROS) Superoxido Peróxido de hidrógeno Ciclooxigenasas y lipooxigenasas Xantin oxidasa Citocromo p450 Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 27. ROL DE ESPECIES REACTIVAS DE OXIGENO EN LRA  Generación de ROS y xantina oxidasa y aumento de la conversión de xantina deshidrogenasa a oxidasa  Peroxidación lipídica (prevenida por scavengers de ROS, inhibidores de la xantina oxidasa o quelantes de hierro  Tasa redox de glutatión es un parámetro de estrés oxidativo que disminuye durante la isquemia y aumenta con la reperfusión  Dieta deficiente en selenio y vitamina E aumenta suceptibilidad de lesión
  • 28. Fragmentación de DNA en apoptosis y necrosis Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 30. Organo Efecto Pulmón Infiltración celular (neutrófilos, cels T, macrófagos IL-6, activación TLR4 Corazón Apoptosis celular por TNF-a Fragmentación mitocondrial y apoptosis Infiltración de macrófagos por osteopontina Hipertrofia y fibrosis por actividad de angiotensina I Hígado Infiltración leucocitaria, estrés oxidativo y apoptosis de hepatocitos Alteración del citocromo p450 Intestino Producción de acidos grasos de cadena corta por microbiota Daño a otros órganos por citocinas inflamatorias
  • 31. Lesión renal aguda en sepsis
  • 32. Epitelio renal en respuesta inflamatoria Sepsis Combinación de activación inmunológica humoral y celular. Nod-like receptor RIG-I-Like receptor Seminars in Nephrology,Vol 35, No 1, January 2015, pp 85–95 Patrones moleculares asociados a da Patrones moleculares asociados a patóge
  • 33. Alteración epitelial tubular renal Inhibición de ciclo celular en G1 Ciclina D-CDK4/6 inhibida Seminars in Nephrology,Vol 35, No 1, January 2015, pp 85–95
  • 34. Desdiferenciación y rediferenciación en daño epitelial renal inducido por sepsis Seminars in Nephrology,Vol 35, No 1, January 2015, pp 85–95
  • 35. Sushrut S. Waikar| Lakshman Gunaratnam| Joseph V. Bonventre. Pathophysiology of Acute Kidney Injury. Chapter 32.
  • 36.
  • 37. Robert W. Schrier, Pathophisiology of ischemic renal failure. Atlas of diseases of the kidney.
  • 38. N Engl J Med 2014;371:58-66. DOI: 10.1056/NEJMra1214243 AKI + CKD  Síndromes interconectados
  • 39. N Engl J Med 2014;371:58-66. DOI: 10.1056/NEJMra1214243
  • 40. Conclusiones  Diversas causas de disminución flujo renal. No siempre hay disminución en TFG.  Daño mitocondrial adquirido, representa evento temprano durante la LRA.  Daño tubular más importante.  En sepsis, los mecanismos de daño activan respuesta inflamatoria:  Pérdida de polaridad, daño microcirculatorio, estrés oxidativo, desdiferenciación – rediferenciación, fibrosis, reprioritización de energéticos, mitofagia, detención del ciclo celular y apoptosis.

Notas del editor

  1. cute renal failure (ARF) is a syndrome characterized by an abrupt and reversible kidney dysfunction. The spectrum of inciting factors is broad: from ischemic and nephrotoxic agents to a variety of endotoxemic states and syndrome of multiple organ failure. The pathophysiology of ARF includes vascular, glomerular and tubular dysfunction which, depending on the actual offending stimulus, vary in the severity and time of appearance. Hemodynamic compromise prevails in cases when noxious stimuli are related to hypotension and septicemia, leading to renal hypoperfusion with secondary tubular changes (described in Chapter 13). Nephrotoxic offenders usually result in primary tubular epithelial cell injury, though endothelial cell dysfunction can also occur, leading to the eventual cessation of glomerular filtration. This latter effect is a consequence of the combined action of tubular obstruction and activation of tubuloglomerular feedback mechanism. In the following pages we shall review the existing concepts on the phenomenology of ARF including the mechanisms of decreased renal perfusion and failure of glomerular filtration, vasoconstriction of renal arterioles, how formed elements gain access to the renal parenchyma, and what the sequelae are of such an invasion by primed leukocytes.
  2. Pathophysiology of ischemic and toxic acute renal failure (ARF). The severe reduction in glomerular filtration rate (GFR) associated with established ischemic or toxic renal injury is due to the combined effects of alterations in intrarenal hemodynamics and tubular injury. The hemodynamic alterations associated with ARF include afferent arteriolar constriction and mesangial contraction, both of which directly reduce GFR. Tubular injury reduces GFR by causing tubular obstruction and by allowing backleak of glomerular filtrate. Abnormalities in tubular reabsorption of solute may contribute to intrarenal vasoconstriction by activating the tubuloglomerular (TG) feedback system. GPF—glomerular plasmaflow; P—glomerular pressure; K f— glomerular ultrafiltration coefficient
  3. Prostacyclin is important in maintaining renal blood flow (RBF) and glomerular filtration rate (GFR) in “prerenal” states. A, When intravascular volume is normal, prostacyclin production in the endothelial cells of the kidney is low and prostacyclin plays little or no role in control of vascular tone. B, The reduction in absolute or “effective” arterial blood volume associated with all prerenal states leads to an increase in the circulating levels of a number of of vasoconstrictors, including angiotensin II, catecholamines, and vasopressin. The increase in vasoconstrictors stimulates phospholipase A2 and prostacyclin production in renal endothelial cells. This increase in prostacyclin production partially counteracts the effects of the circulating vasoconstrictors and plays a critical role in maintaining normal or nearly normal RBF and GFR in prerenal states. C, The effect of cycloxygenase inhibition with nonsteroidal anti-inflammatory drugs (NSAIDs) in prerenal states. Inhibition of prostacyclin production in the presence of intravascular volume depletion results in unopposed action of prevailing vasoconstrictors and results in severe intrarenal vascasoconstriction. NSAIDs can precipitate severe acute renal failure in these situations.
  4. Prostacyclin is important in maintaining renal blood flow (RBF) and glomerular filtration rate (GFR) in “prerenal” states. A, When intravascular volume is normal, prostacyclin production in the endothelial cells of the kidney is low and prostacyclin plays little or no role in control of vascular tone. B, The reduction in absolute or “effective” arterial blood volume associated with all prerenal states leads to an increase in the circulating levels of a number of of vasoconstrictors, including angiotensin II, catecholamines, and vasopressin. The increase in vasoconstrictors stimulates phospholipase A2 and prostacyclin production in renal endothelial cells. This increase in prostacyclin production partially counteracts the effects of the circulating vasoconstrictors and plays a critical role in maintaining normal or nearly normal RBF and GFR in prerenal states. C, The effect of cycloxygenase inhibition with nonsteroidal anti-inflammatory drugs (NSAIDs) in prerenal states. Inhibition of prostacyclin production in the presence of intravascular volume depletion results in unopposed action of prevailing vasoconstrictors and results in severe intrarenal vascasoconstriction. NSAIDs can precipitate severe acute renal failure in these situations.
  5. Prostacyclin is important in maintaining renal blood flow (RBF) and glomerular filtration rate (GFR) in “prerenal” states. A, When intravascular volume is normal, prostacyclin production in the endothelial cells of the kidney is low and prostacyclin plays little or no role in control of vascular tone. B, The reduction in absolute or “effective” arterial blood volume associated with all prerenal states leads to an increase in the circulating levels of a number of of vasoconstrictors, including angiotensin II, catecholamines, and vasopressin. The increase in vasoconstrictors stimulates phospholipase A2 and prostacyclin production in renal endothelial cells. This increase in prostacyclin production partially counteracts the effects of the circulating vasoconstrictors and plays a critical role in maintaining normal or nearly normal RBF and GFR in prerenal states. C, The effect of cycloxygenase inhibition with nonsteroidal anti-inflammatory drugs (NSAIDs) in prerenal states. Inhibition of prostacyclin production in the presence of intravascular volume depletion results in unopposed action of prevailing vasoconstrictors and results in severe intrarenal vascasoconstriction. NSAIDs can precipitate severe acute renal failure in these situations.
  6. Mechanisms of filtration failure in established AKI. Afferent vasoconstriction secondary to TGF activation causes low glomerular hydrostatic pressure whereas tubular and interstitial pressure is increased secondary to inflammatory responses, microvascular dysfunction, tubular obstruction, and failure to resorb filtered salt and water. Increased venous pressure contributes both to reduced renal perfusion and increased renal interstitial pressure
  7. Causes of reduced generalized or regional renal blood flow (RBF).Various pathophysiologic states and medications can contribute to the reduction of RBF, causing generalized or localized ischemia to the kidney leading to acute kidney injury. A partial list of contributors is shown here, pointing to ischemia as a common pathway in a variety of clinical states affecting the kidney. (Adapted from Bonventre JV, Yang L: Cellular pathophysiology of ischemic acute kidney injury, J Clin Invest121:4210, 2011.)
  8. Vasoactive hormones that may be responsible for the hemodynamic abnormalities in acute tubule necrosis (ATN). A persistent reduction in renal blood flow has been demonstrated in both animal models of acute renal failure (ARF) and in humans with ATN. The mechanisms responsible for the hemodynamic alterations in ARF involve an increase in the intrarenal activity of vasoconstrictors and a deficiency of important vasodilators. A number of vasoconstrictors have been implicated in the reduction in renal blood flow in ARF. The importance of individual vasoconstrictor hormones in ARF probably varies to some extent with the cause of the renal injury. A deficiency of vasodilators such as endotheliumderived nitric oxide (EDNO) and/or prostaglandin I2 (PGI 2 ) also contributes to the renal hypoperfusion associated with ARF. This imbalance in intrarenal vasoactive hormones favoring vasoconstriction causes persistent intrarenal hypoxia, thereby exacerbating tubular injury and protracting the course of ARF. The mesangium regulates single-nephron glomerular filtration rate (SNGFR) by altering the glomerular ultrafiltration coefficient (K f ). This schematic diagram demonstrates the anatomic relationship between glomerular capillary loops and the mesangium. The mesangium is surrounded by capillary loops. Mesangial cells (M) are specialized pericytes with contractile elements that can respond to vasoactive hormones. Contraction of mesangium can close and prevent perfusion of anatomically associated glomerular capillary loops. This decreases the surface area available for glomerular filtration and reduces the glomerular ultrafiltration coefficient.
  9.  The S3 segment of the proximal  tubule and the medullary thick ascending  limb are particularly vulnerable to ischemic injury because of the combination  of  borderline  oxygen  supply  and  high  metabolic demand
  10. The tubuloglomerular (TG) feedback mechanism. A, Normal TG feedback. In the normal kidney, the TG feedback mechanism is a sensitive device for the regulation of the single nephron glomerular filtration rate (SNGFR). Step 1: An increase in SNGFR increases the amount of sodium chloride (NaCl) delivered to the juxtaglomerular apparatus (JGA) of the nephron. Step 2: The resultant change in the composition of the filtrate is sensed by the macula densa cells and initiates activation of the JGA. Step 3: The JGA releases renin, which results in the local and systemic generation of angiotensin II. Step 4: Angiotensin II induces vasocontriction of the glomerular arterioles and contraction of the mesangial cells. These events return SNGFR back toward basal levels. B, TG feedback in ARF. Step 1: Ischemic or toxic injury to renal tubules leads to impaired reabsorption of NaCl by injured tubular segments proximal to the JGA. Step 2: The composition of the filtrate passing the macula densa is altered and activates the JGA. Step 3: Angiotensin II is released locally. Step 4: SNGFR is reduced below normal levels. It is likely that vasoconstrictors other than angiotensin II, as well as vasodilator hormones (such as PGI2 and nitric oxide) are also involved in modulating TG feedback. Abnormalities in these vasoactive hormones in ARF may contribute to alterations in TG feedback in ARF.
  11. Metabolic basis for the adenosine hypothesis. A, Osswald’s hypothesis on the role of adenosine in tubuloglomerular feedback. B, Adenosine metabolism: production and disposal via the salvage and degradation pathways. (A, Modified fromOsswald et al. [2]; with permission.)
  12. Following ischemia and reperfusion, morphological changes occur in the proximal tubules, including loss of polarity, loss of the brush border, and redistribution of integrins and Na+/K + -ATPase to the apical surface. Calcium and reactive oxygen species may also have a role in these morphological changes, in addition to subsequent cell death resulting from necrosis and apoptosis. Both viable and nonviable cells are shed into the tubular lumen, resulting in the formation of casts and luminal obstruction and contributing to the reduction in the GFR. Figure modified with permission from the New England Journal of Medicine
  13. Role of adhesion molecules in mediating leukocyte attachment to endothelium. A, The normal inflammatory response is mediated by the release of cytokines that induce leukocyte chemotaxis and activation. The initial interaction of leukocytes with endothelium is mediated by the selectins and their ligands both of which are present on leukocytes and endothelial cells Selectin-mediated leukocyte-endothelial interaction results in the rolling of leukocytes along the endothelium and facilitates the firm adhesion and immobilization of leukocytes. Immobilization of leukocytes to endothelium is mediated by the 2-integrin adhesion molecules on leukocytes and their ICAM ligands on endothelial cells. Immobilization of leukocytes is necessary for diapedesis of leukocytes between endothelial cells into parenchymal tissue. Leukocytes release proteases, elastases, and reactive oxygen radicals that induce tissue injury. Activated leukocytes also elaborate cytokines such as interleukin 1 and tumor necrosis factor which attract additional leukocytes to the site, causing further injury
  14. Mitochondrial energy metabolism and the respiratory chain Acetyl-coenzyme A (Acetyl-CoA) is the terminal product of carbohydrate and lipid metabolism, and is oxidized through the reactions of the Krebs cycle to produce CO 2 . The high energy electrons (e − ) produced by these reactions enter the respiratory chain and eventually reduce molecular oxygen (0 2) to form water (H 20). The energy released by this process is used to pump protons (H + ) across the mitochondrial inner membrane and generate the electrochemical gradient that enables complex V to synthesize ATP. The red ovals represent mitochondrial DNA-encoded subunits of the respiratory chain complexes. CoQ, coenzyme Q
  15. Mitochondrial injury and recovery during acute kidney injury (AKI). Tubular epithelial cells in the proximal tubule and outer medulla are heavily invested with mitochondria in order to generate the ATP necessary for solute transport. Diverse aetiologies of AKI injure the mitochondria, leading to organellar swelling and fragmentation. Injured mitochondria, in turn, release an array of proinflammatory and injurious molecules, such as reactive oxygen species (ROS), which, if unchecked, promote cell death. Experimental findings suggest that recovery from AKI might require the clearance of injured mitochondria through mitophagy and the replenishment of mitochondrial mass through mitochondrial biogenesis, a process mediated by the transcriptional co-activator peroxisome proliferator-activated receptor-γco-activator 1-α(PGC-1-α). Examples of potential preventive and therapeutic strategies are highlighted in pink boxes. mtDNA, mitochondrial DNA.
  16. Apoptosis and necrosis: two distinct morphologic forms of cell death. A, Necrosis. Cells undergoing necrosis become swollen and enlarged. The mitochondria become markedly abnormal. The main morphoplogic features of mitochondrial injury include swelling and flattening of the folds of the inner mitochondrial membrane (the christae). The cell plasma membrane loses its integrity and allows the escape of cytosolic contents including lyzosomal proteases that cause injury and inflammation of the surrounding tissues. B, Apoptosis. In contrast to necrosis, apoptosis is associated with a progressive decrease in cell size and maintenance of a functionally and structurally intact plasma membrane. The decrease in cell size is due to both a loss of cytosolic volume and a decrease in the size of the nucleus. The most characteristic and specific morphologic feature of apoptosis is condensation of nuclear chromatin. Initially the chromatin condenses against the nuclear membrane. Then the nuclear membrane disappears, and the condensed chromatin fragments into many pieces. The plasma membrane undergoes a process of “budding,” which progresses to fragmentation of the cell itself. Multiple plasma membrane–bound fragments of condensed DNA called apoptotic bodies are formed as a result of cell fragmentation. The apoptotic cells and apoptotic bodies are rapidly phagocytosed by neighboring epithelial cells as well as professional phagocytes such as macrophages. The rapid phagocytosis of apoptotic bodies with intact plasma membranes ensures that apoptosis does not cause any surrounding inflammatory reaction.
  17. Cellular sources of reactive oxygen species (ROS) defense systems from free radicals. Superoxide and hydrogen peroxide are produced during normal cellular metabolism. ROS are constantly being produced by the normal cell during a number of physiologic reactions. Mitochondrial respiration is an important source of superoxide production under normal conditions and can be increased during ischemia-reflow or gentamycininduced renal injury. A number of enzymes generate superoxide and hydrogen peroxide during their catalytic cycling. These include cycloxygenases and lipoxygenes that catalyze prostanoid and leukotriene synthesis. Some cells (such as leukocytes, endothelial cells, and vascular smooth muscle cells) have NADH/ or NADPH oxidase enzymes in the plasma membrane that are capable of generating superoxide. Xanthine oxidase, which converts hypoxathine to xanthine, has been implicated as an important source of ROS after ischemia-reperfusion injury. Cytochrome p450, which is bound to the membrane of the endoplasmic reticulum, can be increased by the presence of high concentrations of metabolites that are oxidized by this cytochrome or by injurious events that uncouple the activity of the p450. Finally, the oxidation of small molecules including free heme, thiols, hydroquinines, catecholamines, flavins, and tetrahydropterins, also contribute to intracellular superoxide production. (Adapted from[22]; with permission.
  18. DNA fragmentation in apoptosis vs necrosis. DNA is made up of nucleosomal units. Each nucleosome of DNA is about 200 base pairs in size and is surrounded by histones. Between nucleosomes are small stretches of DNA that are not surrounded by histones and are called linker regions. During apoptosis, early activation of endonuclease(s) causes double-strand breaks in DNA between nucleosomes. No fragmentation occurs in nucleosomes because the DNA is “protected” by the histones. Because of the size of nucleosomes, the DNA is fragmented during apoptosis into multiples of 200 base pair pieces (eg, 200, 400, 600, 800). When the DNA of apoptotic cells is electrophoresed, a characteristic ladder pattern is found. In contrast, necrosis is associated with the early release of lyzosomal proteases, which cause proteolysis of nuclear histones, leaving “naked” stretches of DNA not protected by histones. Activation of endonucleases during necrosis therefore cause DNA cleavage at multiple sites into double- and single-stranded DNA fragments of varying size. Electrophoresis of DNA from necrotic cells results in a smear pattern. Potential causes of apoptosis in acute renal failure (ARF). The same cytotoxic stimuli that induce necrosis cause apoptosis. The mechanism of cell death induced by a specific injury depends in large part on the severity of the injury. Because most cells require constant external signals, called survival signals, to remain viable, the loss of these survival signals can trigger apoptosis. In ARF, a deficiency of growth factors and loss of cell-substrate adhesion are potential causes of apoptosis. The death pathways induced by engagement of tumour necrosis factor (TNF) with the TNF receptor or Fas with its receptor (Fas ligand) are well known causes of apoptosis in immune cells. TNF and Fas can also induce apoptosis in epithelial cells and may contribute to cell death in ARF.
  19. Renal tubule epithelial cells and the inflammatory response. A major effector of sepsis-associated AKI is the RTEC. Sepsis induces an inflammatory response and generates systemic production of DAMPs, PAMPs, and cytokines exogenous to the kidney that can gain access to the tubular space through normal or altered glomerular filtration, or, alternatively, through the peritubular capillary by ill-defined interactions elicited through the endothelial and epithelial layers. These exogenous factors bind to pRRs such as TLRs, Nod-like receptors (NLRs), and RIG-I–like receptors (RLRs) in the RTECs, and endogenous DAMPs and cytokines from these cells are generated that also contribute to damage of downstream tubular epithelial cells. RTECs also can modulate the cellular component of the immune response; RTEC cytokine and chemokine production can attract and/or activate dendritic cells, neutrophils, and T lymphocytes. RTECS can express major histocompatibility complexes (MHCs), and they have been shown to interact directly with neutrophils, monocytes, and T cells, resulting in immune cell infiltration and additional tissue damage. This combination of humoral and cellular immune system activation contributes to RTEC damage directly as well as contributing to the exacerbation of other pathways described in this review. Illustration design was adapted from Gomez et al 8 and Bonventre and Yang.
  20. Renal tubule epithelial cell-cycle alterations in AKI. (A) In the healthy kidney, RTECs are differentiated, and the rate of cell turnover is very low because the vast majority of cells are in G0. However, during sepsis, DAMPs and PAMPs activate signaling pathways that generate very high rates of proliferation. However, as seen in multiple cell types when exposed to various insults, it also has been shown that during AKI, RTECs also enter a short period of G1cell-cycle arrest, presumably to allow the cell to prepare before dividing. It is hypothesized that injury and repair might be part of the same process, in which appropriate coordination and synchronization result in arrest and repair, and maladaptive repair results in apoptosis, fibrosis, and chronic kidney disease. (B) IGFBP7 and TIMP-2 recently were identified as superior early biomarkers for AKI, and both have been implicated in regulation of G1 cell-cycle arrest, leading to the hypothesis for a role of both in RTEC protection during AKI. Whether or not through increases in exogenous IGFBP7 and TIMP-2, or through up-regulation of IGFBP7 and TIMP-2 in RTECs, the expression/function of p21, p27, and p53 are up-regulated, which inhibits cyclin D–CDK4/6 and cyclin E–CDK2 complexes, leading to the arrest of cells in G1. Cyc, cyclin. Illustration design was adapted from Kashani et al 31 and Bonventre and Yang
  21. Dedifferentiation and redifferentiation of renal tubule epithelial cells in sepsis-induced AKI. Among the theories of how RTECs repair during and after AKI, the most prominent is the theory that resident surviving differentiated RTECs de-differentiate, proliferate, and re-differentiate back into functioning tubular epithelium. Normal RTECs are polarized and express specific apical and basolateral proteins, as well as tight junctions. During sepsis-induced AKI, RTECs can lose function as a result of loss of polarity and luminal villi/brush border, internalization/relocalization/down-regulation of cell surface proteins, and loss of tight junctions, and, subsequently, cells can die via apoptosis. However, some cells survive, and these cells can dedifferentiate, presumably to repair, and then proliferate, replacing the cells lost to apoptosis. These dedifferentiated cells then can redifferentiate and regain polarity, brush border, expression of cell surface proteins, and RTEC function. Illustration design adapted from Bonventre and Yan
  22. Bioenergetics and microcirculatory effects in RTECs during sepsis-induced AKI. The origins and processes involved in sepsis-induced AKI are multifaceted, which include the generation of DAMPs and PAMPs, the inflammatory response, humoral and cellular immune responses, perturbation of microvascular flow, oxidative stress, and bioenergetic disturbances and mitochondrial energy re-prioritization. The inflammatory response elicited by DAMPs and PAMPs activates pro- and anti-apoptotic pathways from PRRs such as TLRs that stimulate B-cell lymphoma (BCL) 2 family and caspase cascades, which modulate mitochondria and apoptosis. In addition, microcirculatory perturbations occur through immune cell adhesion and endothelial cell damage, which creates localized sluggish peritubular capillary flow that reduces oxygen and generates oxidative stress. These two separate systems have effects on the mitochondria that alter overall cellular energy balance by increasing reactive oxygen and nitrogen species and uncoupling respiration. As with both the cell-cycle and de-differentiation models mentioned earlier, at least two different outcomes are possible. If the coordination and synchronization of signals or any temporal aspect of the process is maladaptive, mitochondrial fragmentation can occur, resulting in cell death through apoptosis. Alternatively, if the signals are coordinated properly, mitochondria can reprioritize energy use for survival, and damaged mitochondria can enter mitophagy to further conserve energy, which may result in cell survival. Illustration design was adapted from Gomez et al 8 and Bonventre and Yang
  23. Therapeutic approaches, both experimental and in clinical use, to prevent and manage acute renal failure based on its pathogenetic mechanisms. ETR—ET receptor; GFR— glomerular filtration rate; HGF—hepatocyte growth factor 1; IGF-1—insulin-like growth factor 1; K f —glomerular ultrafiltration coefficient; NOS—nitric oxide synthase; PMN— polymorphonuclear leukocytes; RBF—renal blood flow; T4—thyroxine.
  24. The architecture of normal kidney tissue is compared with that of injured tissue after an episode of acute kidney injury. Injured tissue shows alteration of tissue architecture and cell structure, including changes in the brush border. A variety of pathologic processes are initiated in injured and regenerating cells, including premature cell­cycle arrest, activation of myofibroblasts and fibrocytes, re­ cruitment of various infiltrating immune and bone mar­ row cells to the site of injury, vascular dropout, and fi­ brosis. The change in tissue architecture leads to altered anatomical relationships between structures and a tissue microenvironment that promotes additional fibrosis and vascular dropout. Specific subpopulations of cells such as macrophages and T cells, differentially recruited into injured kidney tissues, may determine whether organ responses are ameliorative or maladaptive. The factors mediating recruitment, the populations of cells in human tissues that will have different responses leading to differ­ ent long­term outcomes, and the interaction of recruited cells to determine outcomes are still incompletely under­ stood. The inset shows renal tubular epithelial cells after an episode of acute kidney injury. Representative examples from various experimental studies in animals are listed in the inset. The fate of the cell, as well as the microenvironment and organ, depends on the balance between the results of repair and regenerative pathways, including apoptosis, dedifferentiation, and proinflamma­ tory and antiinflammatory, epigenetic, and profibrotic changes. These processes may occur differentially in heterogeneous cell sets in the kidney microenvironment. Specific macrophage and T­cell subsets, as well as cer­ tain cytokines and immunoreactants, may be associated with either injury or repair. The chronic dysregulation of these factors over time and their net interactions are likely to determine the extent of fibrotic responses and organ function. BMP­7 denotes bone morphogenetic protein 7, TGF­β transforming growth factor β, and Tregs regulatory T cells
  25. When sepsis occurs, PAMPS and DAMPS activate the inflammatory response, setting in motion the many processes that damage RTECs, including loss of polarity, microcirculation derangement and oxidative stress, differentiationredifferentiation or fibrosis, reprioritization of bioenergetics and mitophagy, cell-cycle arrest, and apoptosis.